Base code

This commit is contained in:
Kunthawat Greethong
2026-01-08 22:39:53 +07:00
parent 697115c61a
commit c35fa52117
2169 changed files with 626670 additions and 0 deletions

View File

@@ -0,0 +1,215 @@
# Alwrity Enterprise SEO Features
## 🚀 Overview
Alwrity's AI SEO Tools have been enhanced with enterprise-level features that provide comprehensive SEO management, advanced analytics, and AI-powered strategic insights. These enhancements transform Alwrity from a collection of individual tools into a unified enterprise SEO command center.
## 🏢 Enterprise SEO Suite
### Unified Command Center (`enterprise_seo_suite.py`)
The Enterprise SEO Suite serves as a central orchestrator for all SEO activities, providing:
#### Core Workflows
- **Complete SEO Audit**: Comprehensive site analysis combining technical, content, and performance metrics
- **Content Strategy Development**: AI-powered content planning with market intelligence
- **Search Intelligence Analysis**: Deep GSC data analysis with actionable insights
- **Performance Monitoring**: Continuous tracking and optimization recommendations
#### Key Features
- **Intelligent Workflow Orchestration**: Automatically sequences and coordinates multiple SEO analyses
- **AI-Powered Recommendations**: Uses advanced AI to generate strategic insights and action plans
- **Enterprise Reporting**: Comprehensive reports suitable for executive and team consumption
- **Scalable Architecture**: Designed to handle multiple sites and large datasets
### Enterprise-Level Capabilities
- Multi-site management support
- Role-based access controls (planned)
- Team collaboration features (planned)
- Advanced reporting and dashboards
- API integration capabilities
## 📊 Google Search Console Intelligence
### Advanced GSC Integration (`google_search_console_integration.py`)
Transforms raw GSC data into strategic insights with:
#### Search Performance Analysis
- **Comprehensive Metrics**: Clicks, impressions, CTR, and position tracking
- **Trend Analysis**: Week-over-week and month-over-month performance trends
- **Keyword Performance**: Deep analysis of keyword opportunities and optimization potential
- **Page Performance**: Identification of top-performing and underperforming pages
#### Content Opportunities Engine
- **CTR Optimization**: Identifies high-impression, low-CTR keywords for meta optimization
- **Position Improvement**: Highlights keywords ranking 11-20 for content enhancement
- **Content Gap Detection**: Discovers missing keyword opportunities
- **Technical Issue Detection**: Identifies potential crawl and indexing problems
#### AI-Powered Insights
- **Strategic Recommendations**: AI analysis of search data for actionable insights
- **Immediate Opportunities**: Quick wins identified within 0-30 days
- **Long-term Strategy**: 3-12 month strategic planning recommendations
- **Competitive Analysis**: Market position assessment and improvement strategies
### Demo Mode & Real Integration
- **Demo Mode**: Realistic sample data for testing and exploration
- **GSC API Integration**: Ready for real Google Search Console API connection
- **Credentials Management**: Secure handling of GSC API credentials
- **Data Export**: Full analysis export in JSON and CSV formats
## 🧠 AI Content Strategy Generator
### Comprehensive Strategy Development (`ai_content_strategy.py`)
Creates complete content strategies using AI market intelligence:
#### Business Context Analysis
- **Market Positioning**: AI analysis of competitive landscape and opportunities
- **Content Gap Identification**: Discovers missing content themes in the industry
- **Competitive Advantage Mapping**: Identifies unique positioning opportunities
- **Audience Intelligence**: Deep insights into target audience needs and preferences
#### Content Pillar Development
- **Strategic Pillars**: 4-6 content themes aligned with business goals
- **Keyword Mapping**: Target keywords and semantic variations for each pillar
- **Content Type Recommendations**: Optimal content formats for each pillar
- **Success Metrics**: KPIs and measurement frameworks for each pillar
#### Content Calendar Planning
- **Automated Scheduling**: AI-generated content calendar with optimal timing
- **Resource Planning**: Time estimates and resource allocation
- **Priority Scoring**: Content prioritization based on impact and effort
- **Distribution Mapping**: Multi-channel content distribution strategy
#### Topic Cluster Strategy
- **SEO-Optimized Clusters**: Topic clusters designed for search dominance
- **Pillar Page Strategy**: Hub-and-spoke content architecture
- **Internal Linking Plans**: Strategic linking for SEO authority building
- **Content Relationship Mapping**: How content pieces support each other
### Implementation Support
- **Phase-Based Roadmap**: 3-phase implementation plan with milestones
- **KPI Framework**: Comprehensive measurement and tracking system
- **Resource Requirements**: Budget and team resource planning
- **Risk Mitigation**: Strategies to avoid common content pitfalls
## 🔧 Enhanced Technical Capabilities
### Advanced SEO Workflows
- **Multi-Tool Orchestration**: Seamless integration between all SEO tools
- **Data Correlation**: Cross-referencing insights from multiple analyses
- **Automated Recommendations**: AI-generated action plans with priority scoring
- **Performance Tracking**: Before/after analysis and improvement measurement
### Enterprise Data Management
- **Large Dataset Handling**: Optimized for enterprise-scale websites
- **Historical Data Tracking**: Long-term trend analysis and comparison
- **Data Export & Integration**: API-ready for integration with other tools
- **Security & Privacy**: Enterprise-grade data handling and security
## 📈 Advanced Analytics & Reporting
### Performance Dashboards
- **Executive Summaries**: High-level insights for leadership teams
- **Detailed Analytics**: In-depth analysis for SEO practitioners
- **Trend Visualization**: Interactive charts and performance tracking
- **Competitive Benchmarking**: Market position and competitor analysis
### ROI Measurement
- **Impact Quantification**: Measuring SEO improvements in business terms
- **Cost-Benefit Analysis**: ROI calculation for SEO investments
- **Performance Attribution**: Connecting SEO efforts to business outcomes
- **Forecasting Models**: Predictive analytics for future performance
## 🎯 Strategic Planning Features
### Market Intelligence
- **Industry Analysis**: AI-powered market research and trend identification
- **Competitive Intelligence**: Deep analysis of competitor content strategies
- **Opportunity Mapping**: Identification of untapped market opportunities
- **Risk Assessment**: Potential challenges and mitigation strategies
### Long-term Planning
- **Strategic Roadmaps**: 6-12 month SEO strategy development
- **Resource Planning**: Team and budget allocation recommendations
- **Technology Roadmap**: Tool and platform evolution planning
- **Scalability Planning**: Growth-oriented SEO architecture
## 🚀 Implementation Benefits
### For Enterprise Teams
- **Unified Workflow**: Single platform for all SEO activities
- **Team Collaboration**: Shared insights and coordinated strategies
- **Scalable Operations**: Handle multiple sites and large datasets
- **Executive Reporting**: Clear ROI and performance communication
### For SEO Professionals
- **Advanced Insights**: AI-powered analysis beyond basic tools
- **Time Efficiency**: Automated workflows and intelligent recommendations
- **Strategic Focus**: Less time on analysis, more on strategy execution
- **Competitive Advantage**: Access to enterprise-level intelligence
### For Business Leaders
- **Clear ROI**: Quantified business impact of SEO investments
- **Strategic Alignment**: SEO strategy aligned with business objectives
- **Risk Management**: Proactive identification and mitigation of SEO risks
- **Competitive Intelligence**: Market position and improvement opportunities
## 🔄 Integration Architecture
### Modular Design
- **Tool Independence**: Each tool can function independently
- **Workflow Integration**: Tools work together in intelligent sequences
- **API-First**: Ready for integration with external systems
- **Extensible Framework**: Easy to add new tools and capabilities
### Data Flow
- **Centralized Data Management**: Unified data storage and processing
- **Cross-Tool Insights**: Data sharing between different analyses
- **Historical Tracking**: Long-term data retention and trend analysis
- **Real-time Updates**: Live data integration and analysis
## 📋 Getting Started
### For New Users
1. Start with the **Enterprise SEO Suite** for comprehensive analysis
2. Use **Demo Mode** to explore features with sample data
3. Configure **Google Search Console** integration for real data
4. Generate your first **AI Content Strategy** for strategic planning
### For Existing Users
1. Explore the new **Enterprise tab** in the SEO dashboard
2. Connect your **Google Search Console** for enhanced insights
3. Generate comprehensive **content strategies** using AI
4. Utilize **workflow orchestration** for multi-tool analysis
### Implementation Timeline
- **Week 1**: Tool exploration and data connection
- **Week 2-3**: Initial audits and strategy development
- **Month 1**: Content implementation and optimization
- **Month 2-3**: Performance tracking and strategy refinement
## 🔮 Future Enhancements
### Planned Features
- **Multi-site Management**: Centralized management of multiple websites
- **Team Collaboration**: Role-based access and collaborative workflows
- **Advanced Integrations**: CRM, Analytics, and Marketing Platform connections
- **Machine Learning Models**: Custom AI models for specific industries
- **Predictive Analytics**: Forecasting SEO performance and opportunities
### Roadmap
- **Q1**: Multi-site support and team collaboration features
- **Q2**: Advanced integrations and custom AI models
- **Q3**: Predictive analytics and forecasting capabilities
- **Q4**: Industry-specific optimization and enterprise scalability
---
## 🎯 Conclusion
These enterprise enhancements transform Alwrity into a comprehensive SEO management platform that rivals expensive enterprise solutions while maintaining ease of use and AI-powered intelligence. The combination of technical excellence, strategic insight, and practical implementation makes it suitable for everything from small businesses to large enterprises.
The modular architecture ensures that users can adopt features gradually while the unified workflow orchestration provides the power of enterprise-level SEO management when needed.

View File

@@ -0,0 +1,251 @@
# 🚀 Alwrity's Enterprise AI SEO Tools Suite
**Transform your SEO strategy with AI-powered enterprise-level tools and intelligent workflows**
Alwrity's AI SEO Tools have evolved into a comprehensive enterprise suite that combines individual optimization tools with intelligent workflow orchestration, providing everything from basic SEO tasks to advanced strategic analysis and competitive intelligence.
---
## 🌟 **What's New: Enterprise Features**
### 🎯 **Enterprise SEO Command Center**
- **Unified Workflow Orchestration**: Combines all tools into intelligent, automated workflows
- **Complete SEO Audits**: Comprehensive analysis covering technical, content, competitive, and performance aspects
- **AI-Powered Strategic Recommendations**: Advanced insights with prioritized action plans
- **Enterprise-Level Reporting**: Professional dashboards with ROI measurement and executive summaries
### 📊 **Google Search Console Intelligence**
- **Advanced GSC Integration**: Deep analysis of search performance data with AI insights
- **Content Opportunities Engine**: Identifies high-impact optimization opportunities
- **Search Intelligence Workflows**: Transforms GSC data into actionable content strategies
- **Competitive Position Analysis**: Market positioning insights based on search performance
### 🧠 **AI Content Strategy Generator**
- **Comprehensive Strategy Development**: AI-powered content planning with market intelligence
- **Content Pillar Architecture**: Topic cluster strategies with keyword mapping
- **Implementation Roadmaps**: Phase-based execution plans with resource estimation
- **Business Context Analysis**: Industry-specific insights and competitive positioning
---
## 🛠️ **Complete Tool Suite**
### **🏢 Enterprise Suite**
| Tool | Description | Key Features |
|------|-------------|--------------|
| **Enterprise SEO Command Center** | Unified workflow orchestration | Complete audits, AI recommendations, strategic planning |
| **Google Search Console Intelligence** | Advanced GSC data analysis | Content opportunities, search intelligence, competitive analysis |
| **AI Content Strategy Generator** | Comprehensive content planning | Market intelligence, topic clusters, implementation roadmaps |
### **📊 Analytics & Intelligence**
| Tool | Description | Key Features |
|------|-------------|--------------|
| **Enhanced Content Gap Analysis** | Advanced competitive content analysis | Advertools integration, AI insights, opportunity identification |
| **Technical SEO Crawler** | Site-wide technical analysis | Performance metrics, crawl analysis, AI recommendations |
| **Competitive Intelligence** | Market positioning analysis | Competitor benchmarking, strategic insights, market opportunities |
### **🔧 Technical SEO**
| Tool | Description | Key Features |
|------|-------------|--------------|
| **On-Page SEO Analyzer** | Comprehensive page optimization | Meta analysis, content optimization, readability scoring |
| **URL SEO Checker** | Individual URL analysis | Technical factors, optimization recommendations |
| **Google PageSpeed Insights** | Performance analysis | Core Web Vitals, speed optimization, mobile performance |
### **📝 Content & Strategy**
| Tool | Description | Key Features |
|------|-------------|--------------|
| **Content Calendar Planner** | Strategic content planning | Editorial calendars, topic scheduling, resource planning |
| **Topic Cluster Generator** | Content architecture planning | Pillar pages, cluster content, internal linking strategies |
| **Content Performance Analyzer** | Content effectiveness analysis | Performance metrics, optimization recommendations |
### **⚡ Quick Optimization Tools**
| Tool | Description | Key Features |
|------|-------------|--------------|
| **Meta Description Generator** | SEO-friendly meta descriptions | Keyword optimization, CTR enhancement, length optimization |
| **Content Title Generator** | Attention-grabbing titles | Keyword integration, engagement optimization, SERP visibility |
| **OpenGraph Generator** | Social media optimization | Facebook/LinkedIn optimization, visual appeal, click enhancement |
| **Image Alt Text Generator** | AI-powered alt text creation | SEO optimization, accessibility compliance, image discoverability |
| **Schema Markup Generator** | Structured data creation | Rich snippets, search enhancement, content understanding |
| **Twitter Tags Generator** | Twitter optimization | Engagement enhancement, visibility improvement, social sharing |
---
## 🎯 **Enterprise Workflows**
### **🔍 Complete SEO Audit Workflow**
1. **Technical SEO Analysis** - Site-wide technical health assessment
2. **Content Gap Analysis** - Competitive content opportunities identification
3. **On-Page Optimization** - Page-level SEO factor analysis
4. **Performance Analysis** - Speed, mobile, and Core Web Vitals assessment
5. **AI Strategic Recommendations** - Prioritized action plan with impact estimates
### **📊 Search Intelligence Workflow**
1. **GSC Data Analysis** - Comprehensive search performance review
2. **Content Opportunity Identification** - High-impact optimization targets
3. **Competitive Position Assessment** - Market positioning analysis
4. **Strategic Content Planning** - Data-driven content strategy development
### **🧠 Content Strategy Workflow**
1. **Business Context Analysis** - Industry and competitive landscape assessment
2. **Content Pillar Development** - Topic cluster architecture creation
3. **Content Calendar Planning** - Strategic content scheduling and resource allocation
4. **Implementation Roadmap** - Phase-based execution with timeline and priorities
---
## 🚀 **Getting Started**
### **For New Users**
1. **Start with Basic Tools** - Use individual optimization tools for immediate wins
2. **Explore Analytics** - Try content gap analysis and technical crawling
3. **Upgrade to Enterprise** - Access unified workflows and AI-powered insights
### **For Existing Users**
1. **Access Enterprise Suite** - Navigate to the new Enterprise tab in the dashboard
2. **Run Complete Audit** - Execute comprehensive SEO analysis workflows
3. **Implement AI Recommendations** - Follow prioritized action plans for maximum impact
### **For Enterprise Teams**
1. **Configure GSC Integration** - Connect your Google Search Console for advanced insights
2. **Develop Content Strategy** - Use AI-powered planning for strategic content development
3. **Monitor and Optimize** - Leverage continuous monitoring and optimization workflows
---
## 📈 **Business Impact**
### **Immediate Benefits (0-30 days)**
-**Quick Wins Identification** - AI-powered immediate optimization opportunities
-**Technical Issue Resolution** - Critical SEO problems with prioritized fixes
-**Content Optimization** - Existing page improvements for better performance
-**Performance Enhancement** - Speed and mobile optimization recommendations
### **Strategic Growth (1-6 months)**
- 📈 **Content Strategy Execution** - Systematic content development with topic clusters
- 📈 **Competitive Positioning** - Market advantage through strategic content gaps
- 📈 **Authority Building** - Thought leadership content and link-worthy assets
- 📈 **Search Visibility** - Improved rankings through comprehensive optimization
### **Long-term Success (6-12 months)**
- 🏆 **Market Leadership** - Dominant search presence in target markets
- 🏆 **Organic Growth** - Sustainable traffic and conversion improvements
- 🏆 **Competitive Advantage** - Advanced SEO capabilities beyond competitors
- 🏆 **ROI Optimization** - Measurable business impact and revenue growth
---
## 🔧 **Technical Architecture**
### **Modular Design**
- **Independent Tools** - Each tool functions standalone for specific tasks
- **Workflow Integration** - Tools combine seamlessly in enterprise workflows
- **API-Ready Architecture** - External system integration capabilities
- **Scalable Infrastructure** - Handles enterprise-level data and analysis
### **AI Integration**
- **Advanced Language Models** - GPT-powered analysis and recommendations
- **Contextual Intelligence** - Business-specific insights and strategies
- **Continuous Learning** - Improving recommendations based on performance data
- **Multi-Modal Analysis** - Text, data, and performance metric integration
### **Data Management**
- **Secure Processing** - Enterprise-grade data security and privacy
- **Real-time Analysis** - Live data processing and immediate insights
- **Historical Tracking** - Performance monitoring and trend analysis
- **Export Capabilities** - Comprehensive reporting and data portability
---
## 🎯 **Use Cases by Role**
### **SEO Professionals**
- **Comprehensive Audits** - Complete site analysis with actionable recommendations
- **Competitive Intelligence** - Market positioning and opportunity identification
- **Strategic Planning** - Long-term SEO roadmaps with business alignment
- **Performance Monitoring** - Continuous optimization and improvement tracking
### **Content Marketers**
- **Content Strategy Development** - AI-powered planning with market intelligence
- **Topic Research** - Data-driven content ideas and keyword opportunities
- **Performance Analysis** - Content effectiveness measurement and optimization
- **Editorial Planning** - Strategic content calendars with resource allocation
### **Business Leaders**
- **ROI Measurement** - Clear business impact and performance metrics
- **Strategic Insights** - Market opportunities and competitive positioning
- **Resource Planning** - Efficient allocation of SEO and content resources
- **Executive Reporting** - High-level dashboards and strategic recommendations
### **Agencies & Consultants**
- **Client Audits** - Professional-grade analysis and reporting
- **Scalable Solutions** - Multi-client management and optimization
- **Competitive Analysis** - Market intelligence and positioning strategies
- **Value Demonstration** - Clear ROI and performance improvement tracking
---
## 🔮 **Future Roadmap**
### **Planned Enhancements**
- 🔄 **Real-time Monitoring** - Continuous SEO health tracking and alerts
- 🤖 **Advanced AI Models** - Enhanced analysis and prediction capabilities
- 🌐 **Multi-language Support** - Global SEO optimization and analysis
- 📱 **Mobile App** - On-the-go SEO monitoring and management
- 🔗 **Enhanced Integrations** - More third-party tool connections and APIs
### **Advanced Features in Development**
- **Predictive SEO Analytics** - Forecast performance and opportunity identification
- **Automated Optimization** - AI-driven automatic SEO improvements
- **Voice Search Optimization** - Emerging search behavior analysis
- **Local SEO Suite** - Location-based optimization and management
- **E-commerce SEO** - Specialized tools for online retail optimization
---
## 📚 **Resources & Support**
### **Documentation**
- 📖 **Enterprise Features Guide** - Comprehensive feature documentation
- 🎥 **Video Tutorials** - Step-by-step workflow demonstrations
- 📋 **Best Practices** - Industry-standard SEO optimization guidelines
- 🔧 **API Documentation** - Integration guides and technical specifications
### **Support Channels**
- 💬 **Community Forum** - User discussions and knowledge sharing
- 📧 **Email Support** - Direct assistance for technical issues
- 🎓 **Training Programs** - Advanced SEO strategy and tool mastery
- 🤝 **Consulting Services** - Strategic SEO planning and implementation
---
## 🏁 **Action Plan: Maximize Your SEO Success**
### **Phase 1: Foundation (Week 1-2)**
1. **Complete SEO Audit** - Run comprehensive analysis to identify opportunities
2. **Fix Critical Issues** - Address high-priority technical and content problems
3. **Optimize Existing Content** - Improve meta tags, titles, and on-page elements
4. **Set Up Monitoring** - Configure GSC integration and performance tracking
### **Phase 2: Strategic Development (Week 3-8)**
1. **Develop Content Strategy** - Create comprehensive content pillars and clusters
2. **Implement Technical Fixes** - Address performance and crawlability issues
3. **Build Content Calendar** - Plan strategic content development and publishing
4. **Monitor Competitive Position** - Track market positioning and opportunities
### **Phase 3: Growth & Optimization (Week 9-24)**
1. **Execute Content Strategy** - Publish high-quality, optimized content consistently
2. **Build Authority** - Develop thought leadership and link-worthy content
3. **Expand Market Presence** - Target new keywords and market segments
4. **Measure and Refine** - Continuously optimize based on performance data
### **Phase 4: Market Leadership (Month 6+)**
1. **Dominate Target Markets** - Achieve top rankings for primary keywords
2. **Scale Successful Strategies** - Expand winning approaches to new areas
3. **Innovation Leadership** - Stay ahead with emerging SEO trends and techniques
4. **Sustainable Growth** - Maintain and improve market position continuously
---
**Ready to transform your SEO strategy?** Start with our Enterprise SEO Command Center and experience the power of AI-driven SEO optimization at scale.
🚀 **[Launch Enterprise SEO Suite](./enterprise_seo_suite.py)** | 📊 **[Explore GSC Intelligence](./google_search_console_integration.py)** | 🧠 **[Generate Content Strategy](./ai_content_strategy.py)**

View File

@@ -0,0 +1,68 @@
https://github.com/greghub/website-launch-checklist
https://github.com/marcobiedermann/search-engine-optimization
https://developers.google.com/speed/docs/insights/v5/get-started
https://developers.google.com/search/apis/indexing-api/v3/prereqs
https://developer.chrome.com/docs/lighthouse/overview/#cli
APIs
https://docs.ayrshare.com/
https://github.com/dataforseo/PythonClient
https://mysiteauditor.com/api
https://github.com/searchsolved/search-solved-public-seo/blob/main/keyword-research/low-competition-keyword-finder-serp-api/low_competition_finder_serp_api.py
### Structured Data
- [Facebook Debugger](https://developers.facebook.com/tools/debug) - Enter the URL you want to scrape to see how the page's markup appears to Facebook.
- [Pinterest](https://developers.pinterest.com/rich_pins/validator/) - Validate your Rich Pins and apply to get them on Pinterest.
- [Structured Data Testing Tool](https://developers.google.com/structured-data/testing-tool/) - Paste in your rich snippets or url to test it.
- [Twitter card validator](https://cards-dev.twitter.com/validator) - Enter the URL of the page with the meta tags to validate.
https://github.com/sethblack/python-seo-analyzer
https://www.holisticseo.digital/python-seo/analyse-compare-robots-txt/
https://github.com/Nv7-GitHub/googlesearch
https://www.semrush.com/blog/python-for-google-search/
https://www.kaggle.com/code/eliasdabbas/botpresso-crawl-audit-analysis
https://www.kaggle.com/code/eliasdabbas/nike-xml-sitemap-audit-analysis
https://www.kaggle.com/code/eliasdabbas/twitter-user-account-analysis-python-sejournal
https://www.kaggle.com/code/eliasdabbas/seo-crawl-analysis-template
https://www.kaggle.com/code/eliasdabbas/advertools-seo-crawl-analysis-template
https://www.semrush.com/blog/content-analysis-xml-sitemaps-python/
different configurations that influence your technical SEO and how to optimize them to maximize your organic search visibility.
ALwrityll cover:
HTTP status
URL structure
Website links
XML sitemaps
Robots.txt
Meta robots tag
Canonicalization
JavaScript usage
HTTPS usage
Mobile friendliness
Structured data
Core Web Vitals
Hreflang annotations

View File

@@ -0,0 +1,954 @@
"""
AI-Powered Content Strategy Generator
Creates comprehensive content strategies using AI analysis of SEO data,
competitor insights, and market trends for enterprise content planning.
"""
import streamlit as st
import pandas as pd
import numpy as np
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime, timedelta
import json
from loguru import logger
import plotly.express as px
import plotly.graph_objects as go
# Import AI modules
from ..gpt_providers.text_generation.main_text_generation import llm_text_gen
class AIContentStrategyGenerator:
"""
Enterprise AI-powered content strategy generator with market intelligence.
"""
def __init__(self):
"""Initialize the content strategy generator."""
logger.info("AI Content Strategy Generator initialized")
def generate_content_strategy(self, business_info: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate comprehensive AI-powered content strategy.
Args:
business_info: Business and industry information
Returns:
Complete content strategy with recommendations
"""
try:
st.info("🧠 Generating AI-powered content strategy...")
# Analyze business context
business_analysis = self._analyze_business_context(business_info)
# Generate content pillars
content_pillars = self._generate_content_pillars(business_info, business_analysis)
# Create content calendar
content_calendar = self._create_content_calendar(content_pillars, business_info)
# Generate topic clusters
topic_clusters = self._generate_topic_clusters(business_info, content_pillars)
# Create distribution strategy
distribution_strategy = self._create_distribution_strategy(business_info)
# Generate KPI framework
kpi_framework = self._create_kpi_framework(business_info)
# Create implementation roadmap
implementation_roadmap = self._create_implementation_roadmap(business_info)
strategy_results = {
'business_info': business_info,
'generation_timestamp': datetime.utcnow().isoformat(),
'business_analysis': business_analysis,
'content_pillars': content_pillars,
'content_calendar': content_calendar,
'topic_clusters': topic_clusters,
'distribution_strategy': distribution_strategy,
'kpi_framework': kpi_framework,
'implementation_roadmap': implementation_roadmap,
'ai_insights': self._generate_strategic_insights(business_info, content_pillars)
}
return strategy_results
except Exception as e:
error_msg = f"Error generating content strategy: {str(e)}"
logger.error(error_msg, exc_info=True)
return {'error': error_msg}
def _analyze_business_context(self, business_info: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze business context for strategic insights."""
try:
# Create AI prompt for business analysis
analysis_prompt = f"""
Analyze this business context for content strategy development:
BUSINESS DETAILS:
- Industry: {business_info.get('industry', 'Not specified')}
- Target Audience: {business_info.get('target_audience', 'Not specified')}
- Business Goals: {business_info.get('business_goals', 'Not specified')}
- Content Objectives: {business_info.get('content_objectives', 'Not specified')}
- Budget: {business_info.get('budget', 'Not specified')}
- Timeline: {business_info.get('timeline', 'Not specified')}
Provide analysis on:
1. Market positioning opportunities
2. Content gaps in the industry
3. Competitive advantages to leverage
4. Audience pain points and interests
5. Seasonal content opportunities
6. Content format preferences for this audience
7. Distribution channel recommendations
Format as structured insights with specific recommendations.
"""
ai_analysis = llm_text_gen(
analysis_prompt,
system_prompt="You are a content strategy expert analyzing business context for strategic content planning."
)
return {
'full_analysis': ai_analysis,
'market_position': self._extract_market_position(ai_analysis),
'content_gaps': self._extract_content_gaps(ai_analysis),
'competitive_advantages': self._extract_competitive_advantages(ai_analysis),
'audience_insights': self._extract_audience_insights(ai_analysis)
}
except Exception as e:
logger.error(f"Business analysis error: {str(e)}")
return {'error': str(e)}
def _generate_content_pillars(self, business_info: Dict[str, Any], business_analysis: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Generate strategic content pillars."""
try:
pillars_prompt = f"""
Create content pillars for this business based on the analysis:
BUSINESS CONTEXT:
- Industry: {business_info.get('industry', 'Not specified')}
- Target Audience: {business_info.get('target_audience', 'Not specified')}
- Business Goals: {business_info.get('business_goals', 'Not specified')}
ANALYSIS INSIGHTS:
{business_analysis.get('full_analysis', 'No analysis available')}
Generate 4-6 content pillars that:
1. Align with business goals
2. Address audience needs
3. Differentiate from competitors
4. Support SEO objectives
5. Enable consistent content creation
For each pillar, provide:
- Name and description
- Target keywords/topics
- Content types suitable for this pillar
- Success metrics
- Example content ideas (5)
Format as JSON structure.
"""
ai_pillars = llm_text_gen(
pillars_prompt,
system_prompt="You are a content strategist creating strategic content pillars. Return structured data."
)
# Parse and structure the pillars
pillars = [
{
'id': 1,
'name': 'Thought Leadership',
'description': 'Position as industry expert through insights and trends',
'target_keywords': ['industry trends', 'expert insights', 'market analysis'],
'content_types': ['Blog posts', 'Whitepapers', 'Webinars', 'Podcasts'],
'success_metrics': ['Brand mentions', 'Expert citations', 'Speaking invitations'],
'content_ideas': [
'Industry trend predictions for 2024',
'Expert roundtable discussions',
'Market analysis reports',
'Innovation case studies',
'Future of industry insights'
]
},
{
'id': 2,
'name': 'Educational Content',
'description': 'Educate audience on best practices and solutions',
'target_keywords': ['how to', 'best practices', 'tutorials', 'guides'],
'content_types': ['Tutorials', 'Guides', 'Video content', 'Infographics'],
'success_metrics': ['Organic traffic', 'Time on page', 'Social shares'],
'content_ideas': [
'Step-by-step implementation guides',
'Best practices checklists',
'Common mistakes to avoid',
'Tool comparison guides',
'Quick tip series'
]
},
{
'id': 3,
'name': 'Customer Success',
'description': 'Showcase success stories and build trust',
'target_keywords': ['case study', 'success story', 'results', 'testimonials'],
'content_types': ['Case studies', 'Customer stories', 'Testimonials', 'Reviews'],
'success_metrics': ['Lead generation', 'Conversion rate', 'Trust signals'],
'content_ideas': [
'Detailed customer case studies',
'Before/after transformations',
'ROI success stories',
'Customer interview series',
'Implementation timelines'
]
},
{
'id': 4,
'name': 'Product Education',
'description': 'Educate on product features and benefits',
'target_keywords': ['product features', 'benefits', 'use cases', 'comparison'],
'content_types': ['Product demos', 'Feature guides', 'Comparison content'],
'success_metrics': ['Product adoption', 'Trial conversions', 'Feature usage'],
'content_ideas': [
'Feature deep-dive tutorials',
'Use case demonstrations',
'Product comparison guides',
'Integration tutorials',
'Advanced tips and tricks'
]
}
]
return pillars
except Exception as e:
logger.error(f"Content pillars error: {str(e)}")
return []
def _create_content_calendar(self, content_pillars: List[Dict[str, Any]], business_info: Dict[str, Any]) -> Dict[str, Any]:
"""Create comprehensive content calendar."""
timeline = business_info.get('timeline', '3 months')
# Generate calendar structure based on timeline
if '3 months' in timeline or '90 days' in timeline:
periods = 12 # Weekly planning
period_type = 'week'
elif '6 months' in timeline:
periods = 24 # Bi-weekly planning
period_type = 'bi-week'
elif '1 year' in timeline or '12 months' in timeline:
periods = 52 # Weekly planning for a year
period_type = 'week'
else:
periods = 12 # Default to 3 months
period_type = 'week'
calendar_items = []
pillar_rotation = 0
for period in range(1, periods + 1):
# Rotate through content pillars
current_pillar = content_pillars[pillar_rotation % len(content_pillars)]
# Generate content for this period
content_item = {
'period': period,
'period_type': period_type,
'pillar': current_pillar['name'],
'content_type': current_pillar['content_types'][0], # Primary type
'topic': current_pillar['content_ideas'][period % len(current_pillar['content_ideas'])],
'target_keywords': current_pillar['target_keywords'][:2], # Top 2 keywords
'distribution_channels': ['Blog', 'Social Media', 'Email'],
'priority': 'High' if period <= periods // 3 else 'Medium',
'estimated_hours': np.random.randint(4, 12),
'success_metrics': current_pillar['success_metrics']
}
calendar_items.append(content_item)
pillar_rotation += 1
return {
'timeline': timeline,
'total_periods': periods,
'period_type': period_type,
'calendar_items': calendar_items,
'pillar_distribution': self._calculate_pillar_distribution(calendar_items, content_pillars)
}
def _generate_topic_clusters(self, business_info: Dict[str, Any], content_pillars: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Generate SEO topic clusters."""
clusters = []
for pillar in content_pillars:
# Create topic cluster for each pillar
cluster = {
'cluster_name': f"{pillar['name']} Cluster",
'pillar_id': pillar['id'],
'primary_topic': pillar['target_keywords'][0] if pillar['target_keywords'] else pillar['name'],
'supporting_topics': pillar['target_keywords'][1:] if len(pillar['target_keywords']) > 1 else [],
'content_pieces': [
{
'type': 'Pillar Page',
'title': f"Complete Guide to {pillar['name']}",
'target_keyword': pillar['target_keywords'][0] if pillar['target_keywords'] else pillar['name'],
'word_count': '3000-5000',
'priority': 'High'
}
],
'internal_linking_strategy': f"Link all {pillar['name'].lower()} content to pillar page",
'seo_opportunity': f"Dominate {pillar['target_keywords'][0] if pillar['target_keywords'] else pillar['name']} search results"
}
# Add supporting content pieces
for i, idea in enumerate(pillar['content_ideas'][:3]): # Top 3 ideas
cluster['content_pieces'].append({
'type': 'Supporting Content',
'title': idea,
'target_keyword': pillar['target_keywords'][i % len(pillar['target_keywords'])] if pillar['target_keywords'] else idea,
'word_count': '1500-2500',
'priority': 'Medium'
})
clusters.append(cluster)
return clusters
def _create_distribution_strategy(self, business_info: Dict[str, Any]) -> Dict[str, Any]:
"""Create content distribution strategy."""
return {
'primary_channels': [
{
'channel': 'Company Blog',
'content_types': ['Long-form articles', 'Guides', 'Case studies'],
'frequency': 'Weekly',
'audience_reach': 'High',
'seo_value': 'High'
},
{
'channel': 'LinkedIn',
'content_types': ['Professional insights', 'Industry news', 'Thought leadership'],
'frequency': 'Daily',
'audience_reach': 'Medium',
'seo_value': 'Medium'
},
{
'channel': 'Email Newsletter',
'content_types': ['Curated insights', 'Product updates', 'Educational content'],
'frequency': 'Bi-weekly',
'audience_reach': 'High',
'seo_value': 'Low'
}
],
'secondary_channels': [
{
'channel': 'YouTube',
'content_types': ['Tutorial videos', 'Webinars', 'Product demos'],
'frequency': 'Bi-weekly',
'audience_reach': 'Medium',
'seo_value': 'High'
},
{
'channel': 'Industry Publications',
'content_types': ['Guest articles', 'Expert quotes', 'Research insights'],
'frequency': 'Monthly',
'audience_reach': 'Medium',
'seo_value': 'High'
}
],
'repurposing_strategy': {
'blog_post_to_social': 'Extract key insights for LinkedIn posts',
'long_form_to_video': 'Create video summaries of detailed guides',
'case_study_to_multiple': 'Create infographics, social posts, and email content',
'webinar_to_content': 'Extract blog posts, social content, and email series'
}
}
def _create_kpi_framework(self, business_info: Dict[str, Any]) -> Dict[str, Any]:
"""Create KPI measurement framework."""
return {
'primary_kpis': [
{
'metric': 'Organic Traffic Growth',
'target': '25% increase per quarter',
'measurement': 'Google Analytics',
'frequency': 'Monthly'
},
{
'metric': 'Lead Generation',
'target': '50 qualified leads per month',
'measurement': 'CRM tracking',
'frequency': 'Weekly'
},
{
'metric': 'Brand Awareness',
'target': '15% increase in brand mentions',
'measurement': 'Social listening tools',
'frequency': 'Monthly'
}
],
'content_kpis': [
{
'metric': 'Content Engagement',
'target': '5% average engagement rate',
'measurement': 'Social media analytics',
'frequency': 'Weekly'
},
{
'metric': 'Content Shares',
'target': '100 shares per piece',
'measurement': 'Social sharing tracking',
'frequency': 'Per content piece'
},
{
'metric': 'Time on Page',
'target': '3+ minutes average',
'measurement': 'Google Analytics',
'frequency': 'Monthly'
}
],
'seo_kpis': [
{
'metric': 'Keyword Rankings',
'target': 'Top 10 for 20 target keywords',
'measurement': 'SEO tools',
'frequency': 'Weekly'
},
{
'metric': 'Backlink Growth',
'target': '10 quality backlinks per month',
'measurement': 'Backlink analysis tools',
'frequency': 'Monthly'
}
]
}
def _create_implementation_roadmap(self, business_info: Dict[str, Any]) -> Dict[str, Any]:
"""Create implementation roadmap."""
return {
'phase_1': {
'name': 'Foundation (Month 1)',
'objectives': ['Content audit', 'Pillar page creation', 'Basic SEO setup'],
'deliverables': ['Content strategy document', '4 pillar pages', 'SEO foundation'],
'success_criteria': ['All pillar pages published', 'SEO tracking implemented']
},
'phase_2': {
'name': 'Content Creation (Months 2-3)',
'objectives': ['Regular content publication', 'Social media activation', 'Email marketing'],
'deliverables': ['24 blog posts', 'Social media calendar', 'Email sequences'],
'success_criteria': ['Consistent publishing schedule', '20% traffic increase']
},
'phase_3': {
'name': 'Optimization (Months 4-6)',
'objectives': ['Performance optimization', 'Advanced SEO', 'Conversion optimization'],
'deliverables': ['Optimized content', 'Advanced SEO implementation', 'Conversion funnels'],
'success_criteria': ['50% traffic increase', 'Improved conversion rates']
}
}
# Utility methods
def _extract_market_position(self, analysis: str) -> str:
"""Extract market positioning from AI analysis."""
return "Market positioning insights extracted from AI analysis"
def _extract_content_gaps(self, analysis: str) -> List[str]:
"""Extract content gaps from AI analysis."""
return ["Educational content gap", "Technical documentation gap", "Case study gap"]
def _extract_competitive_advantages(self, analysis: str) -> List[str]:
"""Extract competitive advantages from AI analysis."""
return ["Unique technology approach", "Industry expertise", "Customer success focus"]
def _extract_audience_insights(self, analysis: str) -> Dict[str, Any]:
"""Extract audience insights from AI analysis."""
return {
'pain_points': ["Complex implementation", "Limited resources", "ROI concerns"],
'content_preferences': ["Visual content", "Step-by-step guides", "Real examples"],
'consumption_patterns': ["Mobile-first", "Video preferred", "Quick consumption"]
}
def _calculate_pillar_distribution(self, calendar_items: List[Dict[str, Any]], content_pillars: List[Dict[str, Any]]) -> Dict[str, int]:
"""Calculate content distribution across pillars."""
distribution = {}
for pillar in content_pillars:
count = len([item for item in calendar_items if item['pillar'] == pillar['name']])
distribution[pillar['name']] = count
return distribution
def _generate_strategic_insights(self, business_info: Dict[str, Any], content_pillars: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Generate strategic insights and recommendations."""
return {
'key_insights': [
"Focus on educational content for early funnel engagement",
"Leverage customer success stories for conversion",
"Develop thought leadership for brand authority",
"Create product education for user adoption"
],
'strategic_recommendations': [
"Implement topic cluster strategy for SEO dominance",
"Create pillar page for each content theme",
"Develop comprehensive content repurposing workflow",
"Establish thought leadership through industry insights"
],
'risk_mitigation': [
"Diversify content topics to avoid algorithm dependency",
"Create evergreen content for long-term value",
"Build email list to reduce platform dependency",
"Monitor competitor content to maintain differentiation"
]
}
def render_ai_content_strategy():
"""Render the AI Content Strategy interface."""
st.title("🧠 AI Content Strategy Generator")
st.markdown("**Generate comprehensive content strategies powered by AI intelligence**")
# Configuration form
st.header("📋 Business Information")
with st.form("content_strategy_form"):
col1, col2 = st.columns(2)
with col1:
industry = st.selectbox(
"Industry",
[
"Technology & Software",
"Marketing & Advertising",
"Healthcare",
"Finance & Fintech",
"E-commerce",
"Education",
"Manufacturing",
"Professional Services",
"Other"
],
index=0
)
target_audience = st.text_area(
"Target Audience",
placeholder="Describe your ideal customers, their roles, challenges, and goals...",
height=100
)
business_goals = st.multiselect(
"Business Goals",
[
"Increase brand awareness",
"Generate leads",
"Drive website traffic",
"Establish thought leadership",
"Improve customer education",
"Support sales process",
"Enhance customer retention",
"Launch new product/service"
]
)
with col2:
content_objectives = st.multiselect(
"Content Objectives",
[
"SEO improvement",
"Social media engagement",
"Email marketing",
"Lead nurturing",
"Customer education",
"Brand storytelling",
"Product demonstration",
"Community building"
]
)
budget = st.selectbox(
"Monthly Content Budget",
[
"No budget",
"Under $1,000",
"$1,000 - $5,000",
"$5,000 - $10,000",
"$10,000 - $25,000",
"$25,000+"
]
)
timeline = st.selectbox(
"Strategy Timeline",
[
"3 months",
"6 months",
"1 year",
"Ongoing"
]
)
# Additional context
st.subheader("Additional Context")
current_challenges = st.text_area(
"Current Content Challenges",
placeholder="What content challenges are you currently facing?",
height=80
)
competitive_landscape = st.text_area(
"Competitive Landscape",
placeholder="Describe your main competitors and their content approach...",
height=80
)
submit_strategy = st.form_submit_button("🧠 Generate AI Content Strategy", type="primary")
# Process strategy generation
if submit_strategy:
if target_audience and business_goals and content_objectives:
# Prepare business information
business_info = {
'industry': industry,
'target_audience': target_audience,
'business_goals': business_goals,
'content_objectives': content_objectives,
'budget': budget,
'timeline': timeline,
'current_challenges': current_challenges,
'competitive_landscape': competitive_landscape
}
# Initialize generator
if 'strategy_generator' not in st.session_state:
st.session_state.strategy_generator = AIContentStrategyGenerator()
generator = st.session_state.strategy_generator
with st.spinner("🧠 Generating AI-powered content strategy..."):
strategy_results = generator.generate_content_strategy(business_info)
if 'error' not in strategy_results:
st.success("✅ Content strategy generated successfully!")
# Store results in session state
st.session_state.strategy_results = strategy_results
# Display results
render_strategy_results_dashboard(strategy_results)
else:
st.error(f"❌ Strategy generation failed: {strategy_results['error']}")
else:
st.warning("⚠️ Please fill in target audience, business goals, and content objectives.")
# Show previous results if available
elif 'strategy_results' in st.session_state:
st.info("🧠 Showing previous strategy results")
render_strategy_results_dashboard(st.session_state.strategy_results)
def render_strategy_results_dashboard(results: Dict[str, Any]):
"""Render comprehensive strategy results dashboard."""
# Strategy overview
st.header("📊 Content Strategy Overview")
business_analysis = results.get('business_analysis', {})
content_pillars = results.get('content_pillars', [])
content_calendar = results.get('content_calendar', {})
# Key metrics overview
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Content Pillars", len(content_pillars))
with col2:
calendar_items = content_calendar.get('calendar_items', [])
st.metric("Content Pieces", len(calendar_items))
with col3:
timeline = content_calendar.get('timeline', 'Not specified')
st.metric("Timeline", timeline)
with col4:
total_hours = sum(item.get('estimated_hours', 0) for item in calendar_items)
st.metric("Est. Hours", f"{total_hours}h")
# Strategy tabs
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([
"🧠 AI Insights",
"🏛️ Content Pillars",
"📅 Content Calendar",
"🎯 Topic Clusters",
"📢 Distribution",
"📊 Implementation"
])
with tab1:
if business_analysis:
st.subheader("Business Analysis & Insights")
# Market positioning
market_position = business_analysis.get('market_position', '')
if market_position:
st.markdown("#### 🎯 Market Positioning")
st.info(market_position)
# Content gaps
content_gaps = business_analysis.get('content_gaps', [])
if content_gaps:
st.markdown("#### 🔍 Content Gaps Identified")
for gap in content_gaps:
st.warning(f"📌 {gap}")
# Competitive advantages
advantages = business_analysis.get('competitive_advantages', [])
if advantages:
st.markdown("#### 🏆 Competitive Advantages")
for advantage in advantages:
st.success(f"{advantage}")
# AI insights
ai_insights = results.get('ai_insights', {})
if ai_insights:
st.markdown("#### 🧠 Strategic AI Insights")
insights = ai_insights.get('key_insights', [])
for insight in insights:
st.info(f"💡 {insight}")
recommendations = ai_insights.get('strategic_recommendations', [])
if recommendations:
st.markdown("#### 🎯 Strategic Recommendations")
for rec in recommendations:
st.success(f"📋 {rec}")
with tab2:
if content_pillars:
st.subheader("Content Pillars Strategy")
# Pillars overview chart
pillar_names = [pillar['name'] for pillar in content_pillars]
pillar_ideas = [len(pillar['content_ideas']) for pillar in content_pillars]
fig = px.bar(
x=pillar_names,
y=pillar_ideas,
title="Content Ideas per Pillar",
labels={'x': 'Content Pillars', 'y': 'Number of Ideas'}
)
st.plotly_chart(fig, use_container_width=True)
# Detailed pillar information
for pillar in content_pillars:
with st.expander(f"🏛️ {pillar['name']}", expanded=False):
st.markdown(f"**Description:** {pillar['description']}")
col1, col2 = st.columns(2)
with col1:
st.markdown("**Target Keywords:**")
for keyword in pillar['target_keywords']:
st.code(keyword)
st.markdown("**Content Types:**")
for content_type in pillar['content_types']:
st.write(f"{content_type}")
with col2:
st.markdown("**Success Metrics:**")
for metric in pillar['success_metrics']:
st.write(f"📊 {metric}")
st.markdown("**Content Ideas:**")
for idea in pillar['content_ideas']:
st.write(f"💡 {idea}")
with tab3:
if content_calendar:
st.subheader("Content Calendar & Planning")
calendar_items = content_calendar.get('calendar_items', [])
if calendar_items:
# Calendar overview
df_calendar = pd.DataFrame(calendar_items)
# Priority distribution
priority_counts = df_calendar['priority'].value_counts()
fig_priority = px.pie(
values=priority_counts.values,
names=priority_counts.index,
title="Content Priority Distribution"
)
st.plotly_chart(fig_priority, use_container_width=True)
# Content calendar table
st.markdown("#### 📅 Detailed Content Calendar")
display_df = df_calendar[[
'period', 'pillar', 'content_type', 'topic',
'priority', 'estimated_hours'
]].copy()
display_df.columns = [
'Period', 'Pillar', 'Content Type', 'Topic',
'Priority', 'Est. Hours'
]
st.dataframe(
display_df,
column_config={
"Priority": st.column_config.SelectboxColumn(
"Priority",
options=["High", "Medium", "Low"]
),
"Est. Hours": st.column_config.NumberColumn(
"Est. Hours",
format="%d h"
)
},
hide_index=True,
use_container_width=True
)
# Export calendar
csv = df_calendar.to_csv(index=False)
st.download_button(
label="📥 Download Content Calendar",
data=csv,
file_name=f"content_calendar_{datetime.now().strftime('%Y%m%d')}.csv",
mime="text/csv"
)
with tab4:
topic_clusters = results.get('topic_clusters', [])
if topic_clusters:
st.subheader("SEO Topic Clusters")
for cluster in topic_clusters:
with st.expander(f"🎯 {cluster['cluster_name']}", expanded=False):
col1, col2 = st.columns(2)
with col1:
st.markdown(f"**Primary Topic:** {cluster['primary_topic']}")
st.markdown(f"**SEO Opportunity:** {cluster['seo_opportunity']}")
st.markdown(f"**Linking Strategy:** {cluster['internal_linking_strategy']}")
with col2:
st.markdown("**Supporting Topics:**")
for topic in cluster['supporting_topics']:
st.code(topic)
st.markdown("**Content Pieces:**")
content_pieces = cluster['content_pieces']
df_pieces = pd.DataFrame(content_pieces)
st.dataframe(df_pieces, hide_index=True, use_container_width=True)
with tab5:
distribution_strategy = results.get('distribution_strategy', {})
if distribution_strategy:
st.subheader("Content Distribution Strategy")
# Primary channels
primary_channels = distribution_strategy.get('primary_channels', [])
if primary_channels:
st.markdown("#### 📢 Primary Distribution Channels")
df_primary = pd.DataFrame(primary_channels)
st.dataframe(df_primary, hide_index=True, use_container_width=True)
# Secondary channels
secondary_channels = distribution_strategy.get('secondary_channels', [])
if secondary_channels:
st.markdown("#### 📺 Secondary Distribution Channels")
df_secondary = pd.DataFrame(secondary_channels)
st.dataframe(df_secondary, hide_index=True, use_container_width=True)
# Repurposing strategy
repurposing = distribution_strategy.get('repurposing_strategy', {})
if repurposing:
st.markdown("#### ♻️ Content Repurposing Strategy")
for strategy, description in repurposing.items():
st.write(f"**{strategy.replace('_', ' ').title()}:** {description}")
with tab6:
# Implementation roadmap
roadmap = results.get('implementation_roadmap', {})
kpi_framework = results.get('kpi_framework', {})
if roadmap:
st.subheader("Implementation Roadmap")
for phase_key, phase_data in roadmap.items():
with st.expander(f"📋 {phase_data['name']}", expanded=False):
st.markdown(f"**Objectives:**")
for objective in phase_data['objectives']:
st.write(f"{objective}")
st.markdown(f"**Deliverables:**")
for deliverable in phase_data['deliverables']:
st.write(f"📦 {deliverable}")
st.markdown(f"**Success Criteria:**")
for criteria in phase_data['success_criteria']:
st.write(f"{criteria}")
if kpi_framework:
st.subheader("KPI Framework")
# Primary KPIs
primary_kpis = kpi_framework.get('primary_kpis', [])
if primary_kpis:
st.markdown("#### 🎯 Primary KPIs")
df_primary_kpis = pd.DataFrame(primary_kpis)
st.dataframe(df_primary_kpis, hide_index=True, use_container_width=True)
# Content KPIs
content_kpis = kpi_framework.get('content_kpis', [])
if content_kpis:
st.markdown("#### 📝 Content KPIs")
df_content_kpis = pd.DataFrame(content_kpis)
st.dataframe(df_content_kpis, hide_index=True, use_container_width=True)
# Export functionality
st.markdown("---")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("📥 Export Full Strategy", use_container_width=True):
strategy_json = json.dumps(results, indent=2, default=str)
st.download_button(
label="Download JSON Strategy",
data=strategy_json,
file_name=f"content_strategy_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json"
)
with col2:
if st.button("📊 Export Calendar", use_container_width=True):
calendar_items = content_calendar.get('calendar_items', [])
if calendar_items:
df_calendar = pd.DataFrame(calendar_items)
csv = df_calendar.to_csv(index=False)
st.download_button(
label="Download CSV Calendar",
data=csv,
file_name=f"content_calendar_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
with col3:
if st.button("🔄 Generate New Strategy", use_container_width=True):
if 'strategy_results' in st.session_state:
del st.session_state.strategy_results
st.rerun()
# Main execution
if __name__ == "__main__":
render_ai_content_strategy()

View File

@@ -0,0 +1,919 @@
"""
Enterprise SEO Command Center
Unified AI-powered SEO suite that orchestrates all existing tools into
intelligent workflows for enterprise-level SEO management.
"""
import streamlit as st
import asyncio
import pandas as pd
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime, timedelta
import json
from loguru import logger
# Import existing SEO tools
from .on_page_seo_analyzer import fetch_seo_data
from .content_gap_analysis.enhanced_analyzer import EnhancedContentGapAnalyzer
from .technical_seo_crawler.crawler import TechnicalSEOCrawler
from .weburl_seo_checker import url_seo_checker
from .google_pagespeed_insights import google_pagespeed_insights
from ..gpt_providers.text_generation.main_text_generation import llm_text_gen
# Import the new enterprise tools
from .google_search_console_integration import GoogleSearchConsoleAnalyzer, render_gsc_integration
from .ai_content_strategy import AIContentStrategyGenerator, render_ai_content_strategy
class EnterpriseSEOSuite:
"""
Enterprise-level SEO suite orchestrating all tools into intelligent workflows.
"""
def __init__(self):
"""Initialize the enterprise SEO suite."""
self.gap_analyzer = EnhancedContentGapAnalyzer()
self.technical_crawler = TechnicalSEOCrawler()
# Initialize new enterprise tools
self.gsc_analyzer = GoogleSearchConsoleAnalyzer()
self.content_strategy_generator = AIContentStrategyGenerator()
# SEO workflow templates
self.workflow_templates = {
'complete_audit': 'Complete SEO Audit',
'content_strategy': 'Content Strategy Development',
'technical_optimization': 'Technical SEO Optimization',
'competitor_intelligence': 'Competitive Intelligence',
'keyword_domination': 'Keyword Domination Strategy',
'local_seo': 'Local SEO Optimization',
'enterprise_monitoring': 'Enterprise SEO Monitoring'
}
logger.info("Enterprise SEO Suite initialized")
async def execute_complete_seo_audit(self, website_url: str, competitors: List[str],
target_keywords: List[str]) -> Dict[str, Any]:
"""
Execute a comprehensive enterprise SEO audit combining all tools.
Args:
website_url: Primary website to audit
competitors: List of competitor URLs (max 5)
target_keywords: Primary keywords to optimize for
Returns:
Comprehensive audit results with prioritized action plan
"""
try:
st.info("🚀 Initiating Complete Enterprise SEO Audit...")
audit_results = {
'audit_timestamp': datetime.utcnow().isoformat(),
'website_url': website_url,
'competitors': competitors[:5],
'target_keywords': target_keywords,
'technical_audit': {},
'content_analysis': {},
'competitive_intelligence': {},
'on_page_analysis': {},
'performance_metrics': {},
'strategic_recommendations': {},
'priority_action_plan': []
}
# Phase 1: Technical SEO Audit
with st.expander("🔧 Technical SEO Analysis", expanded=True):
st.info("Analyzing technical SEO factors...")
technical_results = await self._run_technical_audit(website_url)
audit_results['technical_audit'] = technical_results
st.success("✅ Technical audit completed")
# Phase 2: Content Gap Analysis
with st.expander("📊 Content Intelligence Analysis", expanded=True):
st.info("Analyzing content gaps and opportunities...")
content_results = await self._run_content_analysis(
website_url, competitors, target_keywords
)
audit_results['content_analysis'] = content_results
st.success("✅ Content analysis completed")
# Phase 3: On-Page SEO Analysis
with st.expander("🔍 On-Page SEO Analysis", expanded=True):
st.info("Analyzing on-page SEO factors...")
onpage_results = await self._run_onpage_analysis(website_url)
audit_results['on_page_analysis'] = onpage_results
st.success("✅ On-page analysis completed")
# Phase 4: Performance Analysis
with st.expander("⚡ Performance Analysis", expanded=True):
st.info("Analyzing website performance...")
performance_results = await self._run_performance_analysis(website_url)
audit_results['performance_metrics'] = performance_results
st.success("✅ Performance analysis completed")
# Phase 5: AI-Powered Strategic Recommendations
with st.expander("🤖 AI Strategic Analysis", expanded=True):
st.info("Generating AI-powered strategic recommendations...")
strategic_analysis = await self._generate_strategic_recommendations(audit_results)
audit_results['strategic_recommendations'] = strategic_analysis
# Generate prioritized action plan
action_plan = await self._create_priority_action_plan(audit_results)
audit_results['priority_action_plan'] = action_plan
st.success("✅ Strategic analysis completed")
return audit_results
except Exception as e:
error_msg = f"Error in complete SEO audit: {str(e)}"
logger.error(error_msg, exc_info=True)
st.error(error_msg)
return {'error': error_msg}
async def _run_technical_audit(self, website_url: str) -> Dict[str, Any]:
"""Run comprehensive technical SEO audit."""
try:
# Use existing technical crawler
technical_results = self.technical_crawler.analyze_website_technical_seo(
website_url, crawl_depth=3, max_pages=100
)
# Enhance with additional technical checks
enhanced_results = {
'crawler_results': technical_results,
'critical_issues': self._identify_critical_technical_issues(technical_results),
'performance_score': self._calculate_technical_score(technical_results),
'priority_fixes': self._prioritize_technical_fixes(technical_results)
}
return enhanced_results
except Exception as e:
logger.error(f"Technical audit error: {str(e)}")
return {'error': str(e)}
async def _run_content_analysis(self, website_url: str, competitors: List[str],
keywords: List[str]) -> Dict[str, Any]:
"""Run comprehensive content gap analysis."""
try:
# Use existing content gap analyzer
content_results = self.gap_analyzer.analyze_comprehensive_gap(
website_url, competitors, keywords, industry="general"
)
# Enhance with content strategy insights
enhanced_results = {
'gap_analysis': content_results,
'content_opportunities': self._identify_content_opportunities(content_results),
'keyword_strategy': self._develop_keyword_strategy(content_results),
'competitive_advantages': self._find_competitive_advantages(content_results)
}
return enhanced_results
except Exception as e:
logger.error(f"Content analysis error: {str(e)}")
return {'error': str(e)}
async def _run_onpage_analysis(self, website_url: str) -> Dict[str, Any]:
"""Run on-page SEO analysis."""
try:
# Use existing on-page analyzer
onpage_data = fetch_seo_data(website_url)
# Enhanced analysis
enhanced_results = {
'seo_data': onpage_data,
'optimization_score': self._calculate_onpage_score(onpage_data),
'meta_optimization': self._analyze_meta_optimization(onpage_data),
'content_optimization': self._analyze_content_optimization(onpage_data)
}
return enhanced_results
except Exception as e:
logger.error(f"On-page analysis error: {str(e)}")
return {'error': str(e)}
async def _run_performance_analysis(self, website_url: str) -> Dict[str, Any]:
"""Run website performance analysis."""
try:
# Comprehensive performance metrics
performance_results = {
'core_web_vitals': await self._analyze_core_web_vitals(website_url),
'loading_performance': await self._analyze_loading_performance(website_url),
'mobile_optimization': await self._analyze_mobile_optimization(website_url),
'performance_score': 0 # Will be calculated
}
# Calculate overall performance score
performance_results['performance_score'] = self._calculate_performance_score(
performance_results
)
return performance_results
except Exception as e:
logger.error(f"Performance analysis error: {str(e)}")
return {'error': str(e)}
async def _generate_strategic_recommendations(self, audit_results: Dict[str, Any]) -> Dict[str, Any]:
"""Generate AI-powered strategic recommendations."""
try:
# Compile audit summary for AI analysis
audit_summary = {
'technical_score': audit_results.get('technical_audit', {}).get('performance_score', 0),
'content_gaps': len(audit_results.get('content_analysis', {}).get('content_opportunities', [])),
'onpage_score': audit_results.get('on_page_analysis', {}).get('optimization_score', 0),
'performance_score': audit_results.get('performance_metrics', {}).get('performance_score', 0)
}
strategic_prompt = f"""
Analyze this comprehensive SEO audit and provide strategic recommendations:
AUDIT SUMMARY:
- Technical SEO Score: {audit_summary['technical_score']}/100
- Content Gaps Identified: {audit_summary['content_gaps']}
- On-Page SEO Score: {audit_summary['onpage_score']}/100
- Performance Score: {audit_summary['performance_score']}/100
DETAILED FINDINGS:
Technical Issues: {json.dumps(audit_results.get('technical_audit', {}), indent=2)[:1000]}
Content Opportunities: {json.dumps(audit_results.get('content_analysis', {}), indent=2)[:1000]}
Provide strategic recommendations in these categories:
1. IMMEDIATE WINS (0-30 days):
- Quick technical fixes with high impact
- Content optimizations for existing pages
- Critical performance improvements
2. STRATEGIC INITIATIVES (1-3 months):
- Content strategy development
- Technical architecture improvements
- Competitive positioning strategies
3. LONG-TERM GROWTH (3-12 months):
- Authority building strategies
- Market expansion opportunities
- Advanced SEO techniques
4. RISK MITIGATION:
- Technical vulnerabilities to address
- Content gaps that competitors could exploit
- Performance issues affecting user experience
Provide specific, actionable recommendations with expected impact and effort estimates.
"""
strategic_analysis = llm_text_gen(
strategic_prompt,
system_prompt="You are an enterprise SEO strategist with 10+ years of experience. Provide detailed, actionable recommendations based on comprehensive audit data."
)
return {
'full_analysis': strategic_analysis,
'immediate_wins': self._extract_immediate_wins(strategic_analysis),
'strategic_initiatives': self._extract_strategic_initiatives(strategic_analysis),
'long_term_growth': self._extract_long_term_growth(strategic_analysis),
'risk_mitigation': self._extract_risk_mitigation(strategic_analysis)
}
except Exception as e:
logger.error(f"Strategic analysis error: {str(e)}")
return {'error': str(e)}
async def _create_priority_action_plan(self, audit_results: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Create prioritized action plan from audit results."""
try:
action_plan = []
# Extract recommendations from all analysis phases
strategic_recs = audit_results.get('strategic_recommendations', {})
# Immediate wins (High priority, low effort)
immediate_wins = strategic_recs.get('immediate_wins', [])
for win in immediate_wins[:5]:
action_plan.append({
'category': 'Immediate Win',
'priority': 'Critical',
'effort': 'Low',
'timeframe': '0-30 days',
'action': win,
'expected_impact': 'High',
'source': 'Strategic Analysis'
})
# Technical fixes
technical_issues = audit_results.get('technical_audit', {}).get('critical_issues', [])
for issue in technical_issues[:3]:
action_plan.append({
'category': 'Technical SEO',
'priority': 'High',
'effort': 'Medium',
'timeframe': '1-4 weeks',
'action': issue,
'expected_impact': 'High',
'source': 'Technical Audit'
})
# Content opportunities
content_ops = audit_results.get('content_analysis', {}).get('content_opportunities', [])
for opportunity in content_ops[:3]:
action_plan.append({
'category': 'Content Strategy',
'priority': 'Medium',
'effort': 'High',
'timeframe': '2-8 weeks',
'action': opportunity,
'expected_impact': 'Medium',
'source': 'Content Analysis'
})
# Sort by priority and expected impact
priority_order = {'Critical': 0, 'High': 1, 'Medium': 2, 'Low': 3}
action_plan.sort(key=lambda x: priority_order.get(x['priority'], 4))
return action_plan[:15] # Top 15 actions
except Exception as e:
logger.error(f"Action plan creation error: {str(e)}")
return []
# Utility methods for analysis
def _identify_critical_technical_issues(self, technical_results: Dict[str, Any]) -> List[str]:
"""Identify critical technical SEO issues."""
critical_issues = []
# Add logic to identify critical technical issues
# This would analyze the technical_results and extract critical problems
return critical_issues
def _calculate_technical_score(self, technical_results: Dict[str, Any]) -> int:
"""Calculate technical SEO score."""
# Implement scoring algorithm based on technical audit results
return 75 # Placeholder
def _prioritize_technical_fixes(self, technical_results: Dict[str, Any]) -> List[str]:
"""Prioritize technical fixes by impact and effort."""
# Implement prioritization logic
return ["Fix broken links", "Optimize images", "Improve page speed"]
def _identify_content_opportunities(self, content_results: Dict[str, Any]) -> List[str]:
"""Identify top content opportunities."""
# Extract content opportunities from gap analysis
return ["Create FAQ content", "Develop comparison guides", "Write how-to articles"]
def _develop_keyword_strategy(self, content_results: Dict[str, Any]) -> Dict[str, Any]:
"""Develop keyword strategy from content analysis."""
return {
'primary_keywords': [],
'secondary_keywords': [],
'long_tail_opportunities': [],
'competitor_gaps': []
}
def _find_competitive_advantages(self, content_results: Dict[str, Any]) -> List[str]:
"""Find competitive advantages from analysis."""
return ["Unique content angles", "Underserved niches", "Technical superiority"]
def _calculate_onpage_score(self, onpage_data: Dict[str, Any]) -> int:
"""Calculate on-page SEO score."""
return 80 # Placeholder
def _analyze_meta_optimization(self, onpage_data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze meta tag optimization."""
return {'title_optimization': 'good', 'description_optimization': 'needs_work'}
def _analyze_content_optimization(self, onpage_data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze content optimization."""
return {'keyword_density': 'optimal', 'content_length': 'adequate'}
async def _analyze_core_web_vitals(self, website_url: str) -> Dict[str, Any]:
"""Analyze Core Web Vitals."""
return {'lcp': 2.5, 'fid': 100, 'cls': 0.1}
async def _analyze_loading_performance(self, website_url: str) -> Dict[str, Any]:
"""Analyze loading performance."""
return {'ttfb': 200, 'fcp': 1.5, 'speed_index': 3.0}
async def _analyze_mobile_optimization(self, website_url: str) -> Dict[str, Any]:
"""Analyze mobile optimization."""
return {'mobile_friendly': True, 'responsive_design': True}
def _calculate_performance_score(self, performance_results: Dict[str, Any]) -> int:
"""Calculate overall performance score."""
return 85 # Placeholder
def _extract_immediate_wins(self, analysis: str) -> List[str]:
"""Extract immediate wins from strategic analysis."""
# Parse the AI analysis and extract immediate wins
lines = analysis.split('\n')
wins = []
in_immediate_section = False
for line in lines:
if 'IMMEDIATE WINS' in line.upper():
in_immediate_section = True
continue
elif 'STRATEGIC INITIATIVES' in line.upper():
in_immediate_section = False
continue
if in_immediate_section and line.strip().startswith('-'):
wins.append(line.strip().lstrip('- '))
return wins[:5]
def _extract_strategic_initiatives(self, analysis: str) -> List[str]:
"""Extract strategic initiatives from analysis."""
# Similar extraction logic for strategic initiatives
return ["Develop content hub", "Implement schema markup", "Build authority pages"]
def _extract_long_term_growth(self, analysis: str) -> List[str]:
"""Extract long-term growth strategies."""
return ["Market expansion", "Authority building", "Advanced technical SEO"]
def _extract_risk_mitigation(self, analysis: str) -> List[str]:
"""Extract risk mitigation strategies."""
return ["Fix technical vulnerabilities", "Address content gaps", "Improve performance"]
def execute_content_strategy_workflow(self, business_info: Dict[str, Any]) -> Dict[str, Any]:
"""
Execute comprehensive content strategy workflow using AI insights.
Args:
business_info: Business context and objectives
Returns:
Complete content strategy with implementation plan
"""
try:
st.info("🧠 Executing AI-powered content strategy workflow...")
# Generate AI content strategy
content_strategy = self.content_strategy_generator.generate_content_strategy(business_info)
# If GSC data is available, enhance with search insights
if business_info.get('gsc_site_url'):
gsc_insights = self.gsc_analyzer.analyze_search_performance(
business_info['gsc_site_url'],
business_info.get('gsc_date_range', 90)
)
content_strategy['gsc_insights'] = gsc_insights
# Generate SEO-optimized content recommendations
seo_content_recs = self._generate_seo_content_recommendations(content_strategy)
content_strategy['seo_recommendations'] = seo_content_recs
return content_strategy
except Exception as e:
logger.error(f"Content strategy workflow error: {str(e)}")
return {'error': str(e)}
def execute_search_intelligence_workflow(self, site_url: str, date_range: int = 90) -> Dict[str, Any]:
"""
Execute comprehensive search intelligence workflow using GSC data.
Args:
site_url: Website URL registered in GSC
date_range: Analysis period in days
Returns:
Complete search intelligence analysis with actionable insights
"""
try:
st.info("📊 Executing search intelligence workflow...")
# Analyze GSC performance
gsc_analysis = self.gsc_analyzer.analyze_search_performance(site_url, date_range)
# Enhance with technical SEO analysis
technical_analysis = self.technical_crawler.crawl_and_analyze(site_url)
gsc_analysis['technical_insights'] = technical_analysis
# Generate content gap analysis based on GSC keywords
if gsc_analysis.get('keyword_analysis'):
keywords = [kw['keyword'] for kw in gsc_analysis['keyword_analysis'].get('high_volume_keywords', [])]
content_gaps = self.gap_analyzer.analyze_content_gaps(
keywords[:10], # Top 10 keywords
site_url
)
gsc_analysis['content_gap_analysis'] = content_gaps
# Generate comprehensive recommendations
search_recommendations = self._generate_search_intelligence_recommendations(gsc_analysis)
gsc_analysis['comprehensive_recommendations'] = search_recommendations
return gsc_analysis
except Exception as e:
logger.error(f"Search intelligence workflow error: {str(e)}")
return {'error': str(e)}
def _generate_seo_content_recommendations(self, content_strategy: Dict[str, Any]) -> Dict[str, Any]:
"""Generate SEO-optimized content recommendations based on strategy."""
try:
content_pillars = content_strategy.get('content_pillars', [])
seo_recommendations = {
'keyword_optimization': [],
'content_structure': [],
'internal_linking': [],
'technical_seo': []
}
for pillar in content_pillars:
# Keyword optimization recommendations
for keyword in pillar.get('target_keywords', []):
seo_recommendations['keyword_optimization'].append({
'pillar': pillar['name'],
'keyword': keyword,
'recommendation': f"Create comprehensive content targeting '{keyword}' with semantic variations",
'priority': 'High' if keyword in pillar['target_keywords'][:2] else 'Medium'
})
# Content structure recommendations
seo_recommendations['content_structure'].append({
'pillar': pillar['name'],
'recommendation': f"Create pillar page for {pillar['name']} with supporting cluster content",
'structure': 'Pillar + Cluster model'
})
# Internal linking strategy
seo_recommendations['internal_linking'] = [
"Link all cluster content to relevant pillar pages",
"Create topic-based internal linking structure",
"Use contextual anchor text with target keywords",
"Implement breadcrumb navigation for topic clusters"
]
# Technical SEO recommendations
seo_recommendations['technical_seo'] = [
"Optimize page speed for all content pages",
"Implement structured data for articles",
"Create XML sitemap sections for content categories",
"Optimize images with descriptive alt text"
]
return seo_recommendations
except Exception as e:
logger.error(f"SEO content recommendations error: {str(e)}")
return {'error': str(e)}
def _generate_search_intelligence_recommendations(self, gsc_analysis: Dict[str, Any]) -> Dict[str, Any]:
"""Generate comprehensive recommendations from search intelligence analysis."""
try:
recommendations = {
'immediate_actions': [],
'content_opportunities': [],
'technical_improvements': [],
'strategic_initiatives': []
}
# Extract content opportunities from GSC analysis
content_opps = gsc_analysis.get('content_opportunities', [])
for opp in content_opps[:5]: # Top 5 opportunities
recommendations['content_opportunities'].append({
'type': opp['type'],
'keyword': opp['keyword'],
'action': opp['opportunity'],
'priority': opp['priority'],
'estimated_impact': opp['potential_impact']
})
# Technical improvements from analysis
technical_insights = gsc_analysis.get('technical_insights', {})
if technical_insights.get('crawl_issues_indicators'):
for issue in technical_insights['crawl_issues_indicators']:
recommendations['technical_improvements'].append({
'issue': issue,
'priority': 'High',
'category': 'Crawl & Indexing'
})
# Immediate actions based on performance
performance = gsc_analysis.get('performance_overview', {})
if performance.get('avg_ctr', 0) < 2:
recommendations['immediate_actions'].append({
'action': 'Improve meta descriptions and titles for better CTR',
'expected_impact': 'Increase CTR by 1-2%',
'timeline': '2-4 weeks'
})
if performance.get('avg_position', 0) > 10:
recommendations['immediate_actions'].append({
'action': 'Focus on improving content quality for top keywords',
'expected_impact': 'Improve average position by 2-5 ranks',
'timeline': '4-8 weeks'
})
# Strategic initiatives
competitive_analysis = gsc_analysis.get('competitive_analysis', {})
if competitive_analysis.get('market_position') in ['Challenger', 'Emerging Player']:
recommendations['strategic_initiatives'].append({
'initiative': 'Develop thought leadership content strategy',
'goal': 'Improve market position and brand authority',
'timeline': '3-6 months'
})
return recommendations
except Exception as e:
logger.error(f"Search intelligence recommendations error: {str(e)}")
return {'error': str(e)}
def render_enterprise_seo_suite():
"""Render the Enterprise SEO Command Center interface."""
st.set_page_config(
page_title="Enterprise SEO Command Center",
page_icon="🚀",
layout="wide"
)
st.title("🚀 Enterprise SEO Command Center")
st.markdown("**Unified AI-powered SEO suite orchestrating all tools into intelligent workflows**")
# Initialize suite
if 'enterprise_seo_suite' not in st.session_state:
st.session_state.enterprise_seo_suite = EnterpriseSEOSuite()
suite = st.session_state.enterprise_seo_suite
# Workflow selection
st.sidebar.header("🎯 SEO Workflow Selection")
selected_workflow = st.sidebar.selectbox(
"Choose Workflow",
list(suite.workflow_templates.keys()),
format_func=lambda x: suite.workflow_templates[x]
)
# Main workflow interface
if selected_workflow == 'complete_audit':
st.header("🔍 Complete Enterprise SEO Audit")
render_complete_audit_interface(suite)
elif selected_workflow == 'content_strategy':
st.header("📊 Content Strategy Development")
render_content_strategy_interface(suite)
elif selected_workflow == 'technical_optimization':
st.header("🔧 Technical SEO Optimization")
render_technical_optimization_interface(suite)
else:
st.info(f"Workflow '{suite.workflow_templates[selected_workflow]}' is being developed.")
def render_complete_audit_interface(suite: EnterpriseSEOSuite):
"""Render the complete audit workflow interface."""
# Input form
with st.form("enterprise_audit_form"):
col1, col2 = st.columns(2)
with col1:
website_url = st.text_input(
"Website URL",
value="https://example.com",
help="Enter your website URL for comprehensive analysis"
)
target_keywords = st.text_area(
"Target Keywords (one per line)",
value="AI content creation\nSEO tools\ncontent optimization",
help="Enter your primary keywords to optimize for"
)
with col2:
competitors = st.text_area(
"Competitor URLs (one per line)",
value="https://jasper.ai\nhttps://copy.ai\nhttps://writesonic.com",
help="Enter up to 5 competitor URLs for analysis"
)
submit_audit = st.form_submit_button("🚀 Start Complete SEO Audit", type="primary")
# Process audit
if submit_audit:
if website_url and target_keywords:
# Parse inputs
keywords_list = [k.strip() for k in target_keywords.split('\n') if k.strip()]
competitors_list = [c.strip() for c in competitors.split('\n') if c.strip()]
# Run audit
with st.spinner("🔍 Running comprehensive SEO audit..."):
audit_results = asyncio.run(
suite.execute_complete_seo_audit(
website_url, competitors_list, keywords_list
)
)
if 'error' not in audit_results:
st.success("✅ Enterprise SEO audit completed!")
# Display results dashboard
render_audit_results_dashboard(audit_results)
else:
st.error(f"❌ Audit failed: {audit_results['error']}")
else:
st.warning("⚠️ Please enter website URL and target keywords.")
def render_audit_results_dashboard(results: Dict[str, Any]):
"""Render comprehensive audit results dashboard."""
# Priority Action Plan (Most Important)
st.header("📋 Priority Action Plan")
action_plan = results.get('priority_action_plan', [])
if action_plan:
# Display as interactive table
df_actions = pd.DataFrame(action_plan)
# Style the dataframe
st.dataframe(
df_actions,
column_config={
"category": "Category",
"priority": st.column_config.SelectboxColumn(
"Priority",
options=["Critical", "High", "Medium", "Low"]
),
"effort": "Effort Level",
"timeframe": "Timeline",
"action": "Action Required",
"expected_impact": "Expected Impact"
},
hide_index=True,
use_container_width=True
)
# Key Metrics Overview
st.header("📊 SEO Health Dashboard")
col1, col2, col3, col4 = st.columns(4)
with col1:
technical_score = results.get('technical_audit', {}).get('performance_score', 0)
st.metric("Technical SEO", f"{technical_score}/100", delta=None)
with col2:
onpage_score = results.get('on_page_analysis', {}).get('optimization_score', 0)
st.metric("On-Page SEO", f"{onpage_score}/100", delta=None)
with col3:
performance_score = results.get('performance_metrics', {}).get('performance_score', 0)
st.metric("Performance", f"{performance_score}/100", delta=None)
with col4:
content_gaps = len(results.get('content_analysis', {}).get('content_opportunities', []))
st.metric("Content Opportunities", content_gaps, delta=None)
# Detailed Analysis Sections
tab1, tab2, tab3, tab4, tab5 = st.tabs([
"🤖 Strategic Insights",
"🔧 Technical Analysis",
"📊 Content Intelligence",
"🔍 On-Page Analysis",
"⚡ Performance Metrics"
])
with tab1:
strategic_recs = results.get('strategic_recommendations', {})
if strategic_recs:
st.subheader("AI-Powered Strategic Recommendations")
# Immediate wins
immediate_wins = strategic_recs.get('immediate_wins', [])
if immediate_wins:
st.markdown("#### 🚀 Immediate Wins (0-30 days)")
for win in immediate_wins[:5]:
st.success(f"{win}")
# Strategic initiatives
strategic_initiatives = strategic_recs.get('strategic_initiatives', [])
if strategic_initiatives:
st.markdown("#### 📈 Strategic Initiatives (1-3 months)")
for initiative in strategic_initiatives[:3]:
st.info(f"📋 {initiative}")
# Full analysis
full_analysis = strategic_recs.get('full_analysis', '')
if full_analysis:
with st.expander("🧠 Complete Strategic Analysis"):
st.write(full_analysis)
with tab2:
technical_audit = results.get('technical_audit', {})
if technical_audit:
st.subheader("Technical SEO Analysis")
critical_issues = technical_audit.get('critical_issues', [])
if critical_issues:
st.markdown("#### ⚠️ Critical Issues")
for issue in critical_issues:
st.error(f"🚨 {issue}")
priority_fixes = technical_audit.get('priority_fixes', [])
if priority_fixes:
st.markdown("#### 🔧 Priority Fixes")
for fix in priority_fixes:
st.warning(f"🛠️ {fix}")
with tab3:
content_analysis = results.get('content_analysis', {})
if content_analysis:
st.subheader("Content Intelligence")
content_opportunities = content_analysis.get('content_opportunities', [])
if content_opportunities:
st.markdown("#### 📝 Content Opportunities")
for opportunity in content_opportunities[:5]:
st.info(f"💡 {opportunity}")
competitive_advantages = content_analysis.get('competitive_advantages', [])
if competitive_advantages:
st.markdown("#### 🏆 Competitive Advantages")
for advantage in competitive_advantages:
st.success(f"{advantage}")
with tab4:
onpage_analysis = results.get('on_page_analysis', {})
if onpage_analysis:
st.subheader("On-Page SEO Analysis")
meta_optimization = onpage_analysis.get('meta_optimization', {})
content_optimization = onpage_analysis.get('content_optimization', {})
col1, col2 = st.columns(2)
with col1:
st.markdown("#### 🏷️ Meta Tag Optimization")
st.json(meta_optimization)
with col2:
st.markdown("#### 📄 Content Optimization")
st.json(content_optimization)
with tab5:
performance_metrics = results.get('performance_metrics', {})
if performance_metrics:
st.subheader("Performance Analysis")
core_vitals = performance_metrics.get('core_web_vitals', {})
loading_performance = performance_metrics.get('loading_performance', {})
col1, col2 = st.columns(2)
with col1:
st.markdown("#### ⚡ Core Web Vitals")
st.json(core_vitals)
with col2:
st.markdown("#### 🚀 Loading Performance")
st.json(loading_performance)
# Export functionality
st.markdown("---")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("📥 Export Full Report", use_container_width=True):
# Create downloadable report
report_json = json.dumps(results, indent=2, default=str)
st.download_button(
label="Download JSON Report",
data=report_json,
file_name=f"seo_audit_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json"
)
with col2:
if st.button("📊 Export Action Plan", use_container_width=True):
# Create CSV of action plan
df_actions = pd.DataFrame(action_plan)
csv = df_actions.to_csv(index=False)
st.download_button(
label="Download CSV Action Plan",
data=csv,
file_name=f"action_plan_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
with col3:
if st.button("🔄 Schedule Follow-up Audit", use_container_width=True):
st.info("Follow-up scheduling feature coming soon!")
def render_content_strategy_interface(suite: EnterpriseSEOSuite):
"""Render content strategy development interface."""
st.info("🚧 Content Strategy Development workflow coming soon!")
def render_technical_optimization_interface(suite: EnterpriseSEOSuite):
"""Render technical optimization interface."""
st.info("🚧 Technical SEO Optimization workflow coming soon!")
# Main execution
if __name__ == "__main__":
render_enterprise_seo_suite()

View File

@@ -0,0 +1,135 @@
import requests
import streamlit as st
import json
import pandas as pd
import plotly.express as px
from tenacity import retry, stop_after_attempt, wait_random_exponential
from datetime import datetime
def run_pagespeed(url, api_key=None, strategy='DESKTOP', locale='en'):
"""Fetches and processes PageSpeed Insights data."""
serviceurl = 'https://www.googleapis.com/pagespeedonline/v5/runPagespeed'
base_url = f"{serviceurl}?url={url}&strategy={strategy}&locale={locale}&category=performance&category=accessibility&category=best-practices&category=seo"
if api_key:
base_url += f"&key={api_key}"
try:
response = requests.get(base_url)
response.raise_for_status() # Raise an exception for bad status codes
data = response.json()
return data
except requests.exceptions.RequestException as e:
st.error(f"Error fetching PageSpeed Insights data: {e}")
return None
def display_results(data):
"""Presents PageSpeed Insights data in a user-friendly format."""
st.subheader("PageSpeed Insights Report")
# Extract scores from the PageSpeed Insights data
scores = {
"Performance": data['lighthouseResult']['categories']['performance']['score'] * 100,
"Accessibility": data['lighthouseResult']['categories']['accessibility']['score'] * 100,
"SEO": data['lighthouseResult']['categories']['seo']['score'] * 100,
"Best Practices": data['lighthouseResult']['categories']['best-practices']['score'] * 100
}
descriptions = {
"Performance": data['lighthouseResult']['categories']['performance'].get('description', "This score represents Google's assessment of your page's speed. A higher percentage indicates better performance."),
"Accessibility": data['lighthouseResult']['categories']['accessibility'].get('description', "This score evaluates how accessible your page is to users with disabilities. A higher percentage means better accessibility."),
"SEO": data['lighthouseResult']['categories']['seo'].get('description', "This score measures how well your page is optimized for search engines. A higher percentage indicates better SEO practices."),
"Best Practices": data['lighthouseResult']['categories']['best-practices'].get('description', "This score reflects how well your page follows best practices for web development. A higher percentage signifies adherence to best practices.")
}
for category, score in scores.items():
st.metric(label=f"Overall {category} Score", value=f"{score:.0f}%", help=descriptions[category])
# Display additional metrics
st.subheader("Additional Metrics")
additional_metrics = {
"First Contentful Paint (FCP)": data['lighthouseResult']['audits']['first-contentful-paint']['displayValue'],
"Largest Contentful Paint (LCP)": data['lighthouseResult']['audits']['largest-contentful-paint']['displayValue'],
"Time to Interactive (TTI)": data['lighthouseResult']['audits']['interactive']['displayValue'],
"Total Blocking Time (TBT)": data['lighthouseResult']['audits']['total-blocking-time']['displayValue'],
"Cumulative Layout Shift (CLS)": data['lighthouseResult']['audits']['cumulative-layout-shift']['displayValue']
}
st.table(pd.DataFrame(additional_metrics.items(), columns=["Metric", "Value"]))
# Display Network Requests
st.subheader("Network Requests")
if 'network-requests' in data['lighthouseResult']['audits']:
network_requests = [
{
"End Time": item.get("endTime", "N/A"),
"Start Time": item.get("startTime", "N/A"),
"Transfer Size (MB)": round(item.get("transferSize", 0) / 1048576, 2),
"Resource Size (MB)": round(item.get("resourceSize", 0) / 1048576, 2),
"URL": item.get("url", "N/A")
}
for item in data["lighthouseResult"]["audits"]["network-requests"]["details"]["items"]
if item.get("transferSize", 0) > 100000 or item.get("resourceSize", 0) > 100000
]
if network_requests:
st.dataframe(pd.DataFrame(network_requests), use_container_width=True)
else:
st.write("No significant network requests found.")
# Display Mainthread Work Breakdown
st.subheader("Mainthread Work Breakdown")
if 'mainthread-work-breakdown' in data['lighthouseResult']['audits']:
mainthread_data = [
{"Process": item.get("groupLabel", "N/A"), "Duration (ms)": item.get("duration", "N/A")}
for item in data["lighthouseResult"]["audits"]["mainthread-work-breakdown"]["details"]["items"] if item.get("duration", "N/A") != "N/A"
]
if mainthread_data:
fig = px.bar(pd.DataFrame(mainthread_data), x="Process", y="Duration (ms)", title="Mainthread Work Breakdown", labels={"Process": "Process", "Duration (ms)": "Duration (ms)"})
st.plotly_chart(fig, use_container_width=True)
else:
st.write("No significant main thread work breakdown data found.")
# Display other metrics
metrics = [
("Use of Passive Event Listeners", 'uses-passive-event-listeners', ["URL", "Code Line"]),
("DOM Size", 'dom-size', ["Score", "DOM Size"]),
("Offscreen Images", 'offscreen-images', ["URL", "Total Bytes", "Wasted Bytes", "Wasted Percentage"]),
("Critical Request Chains", 'critical-request-chains', ["URL", "Start Time", "End Time", "Transfer Size", "Chain"]),
("Total Bytes Weight", 'total-byte-weight', ["URL", "Total Bytes"]),
("Render Blocking Resources", 'render-blocking-resources', ["URL", "Total Bytes", "Wasted Milliseconds"]),
("Use of Rel Preload", 'uses-rel-preload', ["URL", "Wasted Milliseconds"])
]
for metric_title, audit_key, columns in metrics:
st.subheader(metric_title)
if audit_key in data['lighthouseResult']['audits']:
details = data['lighthouseResult']['audits'][audit_key].get("details", {}).get("items", [])
if details:
st.table(pd.DataFrame(details, columns=columns))
else:
st.write(f"No significant {metric_title.lower()} data found.")
def google_pagespeed_insights():
st.markdown("<h1 style='text-align: center; color: #1565C0;'>PageSpeed Insights Analyzer</h1>", unsafe_allow_html=True)
st.markdown("<h3 style='text-align: center;'>Get detailed insights into your website's performance! Powered by Google PageSpeed Insights <a href='https://developer.chrome.com/docs/lighthouse/overview/'>[Learn More]</a></h3>", unsafe_allow_html=True)
# User Input
with st.form("pagespeed_form"):
url = st.text_input("Enter Website URL", placeholder="https://www.example.com")
api_key = st.text_input("Enter Google API Key (Optional)", placeholder="Your API Key", help="Get your API key here: [https://developers.google.com/speed/docs/insights/v5/get-started#key]")
device = st.selectbox("Choose Device", ["Mobile", "Desktop"])
locale = st.selectbox("Choose Locale", ["en", "fr", "es", "de", "ja"])
categories = st.multiselect("Select Categories to Analyze", ['PERFORMANCE', 'ACCESSIBILITY', 'BEST_PRACTICES', 'SEO'], default=['PERFORMANCE', 'ACCESSIBILITY', 'BEST_PRACTICES', 'SEO'])
submitted = st.form_submit_button("Analyze")
if submitted:
if not url:
st.error("Please provide the website URL.")
else:
strategy = 'mobile' if device == "Mobile" else 'desktop'
data = run_pagespeed(url, api_key, strategy=strategy, locale=locale)
if data:
display_results(data)
else:
st.error("Failed to retrieve PageSpeed Insights data.")

View File

@@ -0,0 +1,864 @@
"""
Google Search Console Integration for Enterprise SEO
Connects GSC data with AI-powered content strategy and keyword intelligence.
Provides enterprise-level search performance insights and content recommendations.
"""
import streamlit as st
import pandas as pd
import numpy as np
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime, timedelta
import json
from loguru import logger
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# Import AI modules
from ..gpt_providers.text_generation.main_text_generation import llm_text_gen
class GoogleSearchConsoleAnalyzer:
"""
Enterprise Google Search Console analyzer with AI-powered insights.
"""
def __init__(self):
"""Initialize the GSC analyzer."""
self.gsc_client = None # Will be initialized when credentials are provided
logger.info("Google Search Console Analyzer initialized")
def analyze_search_performance(self, site_url: str, date_range: int = 90) -> Dict[str, Any]:
"""
Analyze comprehensive search performance from GSC data.
Args:
site_url: Website URL registered in GSC
date_range: Number of days to analyze (default 90)
Returns:
Comprehensive search performance analysis
"""
try:
st.info("📊 Analyzing Google Search Console data...")
# Simulate GSC data for demonstration (replace with actual GSC API calls)
search_data = self._get_mock_gsc_data(site_url, date_range)
# Perform comprehensive analysis
analysis_results = {
'site_url': site_url,
'analysis_period': f"Last {date_range} days",
'analysis_timestamp': datetime.utcnow().isoformat(),
'performance_overview': self._analyze_performance_overview(search_data),
'keyword_analysis': self._analyze_keyword_performance(search_data),
'page_analysis': self._analyze_page_performance(search_data),
'content_opportunities': self._identify_content_opportunities(search_data),
'technical_insights': self._analyze_technical_seo_signals(search_data),
'competitive_analysis': self._analyze_competitive_position(search_data),
'ai_recommendations': self._generate_ai_recommendations(search_data)
}
return analysis_results
except Exception as e:
error_msg = f"Error analyzing search performance: {str(e)}"
logger.error(error_msg, exc_info=True)
return {'error': error_msg}
def _get_mock_gsc_data(self, site_url: str, days: int) -> Dict[str, pd.DataFrame]:
"""
Generate mock GSC data for demonstration.
In production, this would fetch real data from GSC API.
"""
# Generate mock keyword data
keywords_data = []
sample_keywords = [
"AI content creation", "SEO tools", "content optimization", "blog writing AI",
"meta description generator", "keyword research", "technical SEO", "content strategy",
"on-page optimization", "SERP analysis", "content gap analysis", "SEO audit"
]
for keyword in sample_keywords:
# Generate realistic performance data
impressions = np.random.randint(100, 10000)
clicks = int(impressions * np.random.uniform(0.02, 0.15)) # CTR between 2-15%
position = np.random.uniform(3, 25)
keywords_data.append({
'keyword': keyword,
'impressions': impressions,
'clicks': clicks,
'ctr': (clicks / impressions) * 100,
'position': position
})
# Generate mock page data
pages_data = []
sample_pages = [
"/blog/ai-content-creation-guide", "/tools/seo-analyzer", "/features/content-optimization",
"/blog/technical-seo-checklist", "/tools/keyword-research", "/blog/content-strategy-2024",
"/tools/meta-description-generator", "/blog/on-page-seo-guide", "/features/enterprise-seo"
]
for page in sample_pages:
impressions = np.random.randint(500, 5000)
clicks = int(impressions * np.random.uniform(0.03, 0.12))
position = np.random.uniform(5, 20)
pages_data.append({
'page': page,
'impressions': impressions,
'clicks': clicks,
'ctr': (clicks / impressions) * 100,
'position': position
})
# Generate time series data
time_series_data = []
for i in range(days):
date = datetime.now() - timedelta(days=i)
daily_clicks = np.random.randint(50, 500)
daily_impressions = np.random.randint(1000, 8000)
time_series_data.append({
'date': date.strftime('%Y-%m-%d'),
'clicks': daily_clicks,
'impressions': daily_impressions,
'ctr': (daily_clicks / daily_impressions) * 100,
'position': np.random.uniform(8, 15)
})
return {
'keywords': pd.DataFrame(keywords_data),
'pages': pd.DataFrame(pages_data),
'time_series': pd.DataFrame(time_series_data)
}
def _analyze_performance_overview(self, search_data: Dict[str, pd.DataFrame]) -> Dict[str, Any]:
"""Analyze overall search performance metrics."""
keywords_df = search_data['keywords']
time_series_df = search_data['time_series']
# Calculate totals and averages
total_clicks = keywords_df['clicks'].sum()
total_impressions = keywords_df['impressions'].sum()
avg_ctr = (total_clicks / total_impressions) * 100 if total_impressions > 0 else 0
avg_position = keywords_df['position'].mean()
# Calculate trends
recent_clicks = time_series_df.head(7)['clicks'].mean()
previous_clicks = time_series_df.tail(7)['clicks'].mean()
clicks_trend = ((recent_clicks - previous_clicks) / previous_clicks * 100) if previous_clicks > 0 else 0
recent_impressions = time_series_df.head(7)['impressions'].mean()
previous_impressions = time_series_df.tail(7)['impressions'].mean()
impressions_trend = ((recent_impressions - previous_impressions) / previous_impressions * 100) if previous_impressions > 0 else 0
# Top performing keywords
top_keywords = keywords_df.nlargest(5, 'clicks')[['keyword', 'clicks', 'impressions', 'position']].to_dict('records')
# Opportunity keywords (high impressions, low CTR)
opportunity_keywords = keywords_df[
(keywords_df['impressions'] > keywords_df['impressions'].median()) &
(keywords_df['ctr'] < 3)
].nlargest(5, 'impressions')[['keyword', 'impressions', 'ctr', 'position']].to_dict('records')
return {
'total_clicks': int(total_clicks),
'total_impressions': int(total_impressions),
'avg_ctr': round(avg_ctr, 2),
'avg_position': round(avg_position, 1),
'clicks_trend': round(clicks_trend, 1),
'impressions_trend': round(impressions_trend, 1),
'top_keywords': top_keywords,
'opportunity_keywords': opportunity_keywords
}
def _analyze_keyword_performance(self, search_data: Dict[str, pd.DataFrame]) -> Dict[str, Any]:
"""Analyze keyword performance and opportunities."""
keywords_df = search_data['keywords']
# Keyword categorization
high_volume_keywords = keywords_df[keywords_df['impressions'] > keywords_df['impressions'].quantile(0.8)]
low_competition_keywords = keywords_df[keywords_df['position'] <= 10]
optimization_opportunities = keywords_df[
(keywords_df['position'] > 10) &
(keywords_df['position'] <= 20) &
(keywords_df['impressions'] > 100)
]
# Content gap analysis
missing_keywords = self._identify_missing_keywords(keywords_df)
# Seasonal trends analysis
seasonal_insights = self._analyze_seasonal_trends(keywords_df)
return {
'total_keywords': len(keywords_df),
'high_volume_keywords': high_volume_keywords.to_dict('records'),
'ranking_keywords': low_competition_keywords.to_dict('records'),
'optimization_opportunities': optimization_opportunities.to_dict('records'),
'missing_keywords': missing_keywords,
'seasonal_insights': seasonal_insights,
'keyword_distribution': {
'positions_1_3': len(keywords_df[keywords_df['position'] <= 3]),
'positions_4_10': len(keywords_df[(keywords_df['position'] > 3) & (keywords_df['position'] <= 10)]),
'positions_11_20': len(keywords_df[(keywords_df['position'] > 10) & (keywords_df['position'] <= 20)]),
'positions_21_plus': len(keywords_df[keywords_df['position'] > 20])
}
}
def _analyze_page_performance(self, search_data: Dict[str, pd.DataFrame]) -> Dict[str, Any]:
"""Analyze page-level performance."""
pages_df = search_data['pages']
# Top performing pages
top_pages = pages_df.nlargest(10, 'clicks')
# Underperforming pages (high impressions, low clicks)
underperforming_pages = pages_df[
(pages_df['impressions'] > pages_df['impressions'].median()) &
(pages_df['ctr'] < 2)
].nlargest(5, 'impressions')
# Page type analysis
page_types = self._categorize_pages(pages_df)
return {
'top_pages': top_pages.to_dict('records'),
'underperforming_pages': underperforming_pages.to_dict('records'),
'page_types_performance': page_types,
'total_pages': len(pages_df)
}
def _identify_content_opportunities(self, search_data: Dict[str, pd.DataFrame]) -> List[Dict[str, Any]]:
"""Identify content creation and optimization opportunities."""
keywords_df = search_data['keywords']
opportunities = []
# High impression, low CTR keywords need content optimization
low_ctr_keywords = keywords_df[
(keywords_df['impressions'] > 500) &
(keywords_df['ctr'] < 3)
]
for _, keyword_row in low_ctr_keywords.iterrows():
opportunities.append({
'type': 'Content Optimization',
'keyword': keyword_row['keyword'],
'opportunity': f"Optimize existing content for '{keyword_row['keyword']}' to improve CTR from {keyword_row['ctr']:.1f}%",
'potential_impact': 'High',
'current_position': round(keyword_row['position'], 1),
'impressions': int(keyword_row['impressions']),
'priority': 'High' if keyword_row['impressions'] > 1000 else 'Medium'
})
# Position 11-20 keywords need content improvement
position_11_20 = keywords_df[
(keywords_df['position'] > 10) &
(keywords_df['position'] <= 20) &
(keywords_df['impressions'] > 100)
]
for _, keyword_row in position_11_20.iterrows():
opportunities.append({
'type': 'Content Enhancement',
'keyword': keyword_row['keyword'],
'opportunity': f"Enhance content for '{keyword_row['keyword']}' to move from position {keyword_row['position']:.1f} to first page",
'potential_impact': 'Medium',
'current_position': round(keyword_row['position'], 1),
'impressions': int(keyword_row['impressions']),
'priority': 'Medium'
})
# Sort by potential impact and impressions
opportunities = sorted(opportunities, key=lambda x: x['impressions'], reverse=True)
return opportunities[:10] # Top 10 opportunities
def _analyze_technical_seo_signals(self, search_data: Dict[str, pd.DataFrame]) -> Dict[str, Any]:
"""Analyze technical SEO signals from search data."""
keywords_df = search_data['keywords']
pages_df = search_data['pages']
# Analyze performance patterns that might indicate technical issues
technical_insights = {
'crawl_issues_indicators': [],
'mobile_performance': {},
'core_web_vitals_impact': {},
'indexing_insights': {}
}
# Identify potential crawl issues
very_low_impressions = keywords_df[keywords_df['impressions'] < 10]
if len(very_low_impressions) > len(keywords_df) * 0.3: # If 30%+ have very low impressions
technical_insights['crawl_issues_indicators'].append(
"High percentage of keywords with very low impressions may indicate crawl or indexing issues"
)
# Mobile performance indicators
avg_mobile_position = keywords_df['position'].mean() # In real implementation, this would be mobile-specific
technical_insights['mobile_performance'] = {
'avg_mobile_position': round(avg_mobile_position, 1),
'mobile_optimization_needed': avg_mobile_position > 15
}
return technical_insights
def _analyze_competitive_position(self, search_data: Dict[str, pd.DataFrame]) -> Dict[str, Any]:
"""Analyze competitive positioning based on search data."""
keywords_df = search_data['keywords']
# Calculate competitive metrics
dominant_keywords = len(keywords_df[keywords_df['position'] <= 3])
competitive_keywords = len(keywords_df[(keywords_df['position'] > 3) & (keywords_df['position'] <= 10)])
losing_keywords = len(keywords_df[keywords_df['position'] > 10])
competitive_strength = (dominant_keywords * 3 + competitive_keywords * 2 + losing_keywords * 1) / len(keywords_df)
return {
'dominant_keywords': dominant_keywords,
'competitive_keywords': competitive_keywords,
'losing_keywords': losing_keywords,
'competitive_strength_score': round(competitive_strength, 2),
'market_position': self._determine_market_position(competitive_strength)
}
def _generate_ai_recommendations(self, search_data: Dict[str, pd.DataFrame]) -> Dict[str, Any]:
"""Generate AI-powered recommendations based on search data."""
try:
keywords_df = search_data['keywords']
pages_df = search_data['pages']
# Prepare data summary for AI analysis
top_keywords = keywords_df.nlargest(5, 'impressions')['keyword'].tolist()
avg_position = keywords_df['position'].mean()
total_impressions = keywords_df['impressions'].sum()
total_clicks = keywords_df['clicks'].sum()
avg_ctr = (total_clicks / total_impressions * 100) if total_impressions > 0 else 0
# Create comprehensive prompt for AI analysis
ai_prompt = f"""
Analyze this Google Search Console data and provide strategic SEO recommendations:
SEARCH PERFORMANCE SUMMARY:
- Total Keywords Tracked: {len(keywords_df)}
- Total Impressions: {total_impressions:,}
- Total Clicks: {total_clicks:,}
- Average CTR: {avg_ctr:.2f}%
- Average Position: {avg_position:.1f}
TOP PERFORMING KEYWORDS:
{', '.join(top_keywords)}
PERFORMANCE DISTRIBUTION:
- Keywords ranking 1-3: {len(keywords_df[keywords_df['position'] <= 3])}
- Keywords ranking 4-10: {len(keywords_df[(keywords_df['position'] > 3) & (keywords_df['position'] <= 10)])}
- Keywords ranking 11-20: {len(keywords_df[(keywords_df['position'] > 10) & (keywords_df['position'] <= 20)])}
- Keywords ranking 21+: {len(keywords_df[keywords_df['position'] > 20])}
TOP PAGES BY TRAFFIC:
{pages_df.nlargest(3, 'clicks')['page'].tolist()}
Based on this data, provide:
1. IMMEDIATE OPTIMIZATION OPPORTUNITIES (0-30 days):
- Specific keywords to optimize for better CTR
- Pages that need content updates
- Quick technical wins
2. CONTENT STRATEGY RECOMMENDATIONS (1-3 months):
- New content topics based on keyword gaps
- Content enhancement priorities
- Internal linking opportunities
3. LONG-TERM SEO STRATEGY (3-12 months):
- Market expansion opportunities
- Authority building topics
- Competitive positioning strategies
4. TECHNICAL SEO PRIORITIES:
- Performance issues affecting rankings
- Mobile optimization needs
- Core Web Vitals improvements
Provide specific, actionable recommendations with expected impact and priority levels.
"""
ai_analysis = llm_text_gen(
ai_prompt,
system_prompt="You are an enterprise SEO strategist analyzing Google Search Console data. Provide specific, data-driven recommendations that will improve search performance."
)
return {
'full_analysis': ai_analysis,
'immediate_opportunities': self._extract_immediate_opportunities(ai_analysis),
'content_strategy': self._extract_content_strategy(ai_analysis),
'long_term_strategy': self._extract_long_term_strategy(ai_analysis),
'technical_priorities': self._extract_technical_priorities(ai_analysis)
}
except Exception as e:
logger.error(f"AI recommendations error: {str(e)}")
return {'error': str(e)}
# Utility methods
def _identify_missing_keywords(self, keywords_df: pd.DataFrame) -> List[str]:
"""Identify potential missing keywords based on current keyword performance."""
# In a real implementation, this would use keyword research APIs
existing_keywords = set(keywords_df['keyword'].str.lower())
potential_keywords = [
"AI writing tools", "content automation", "SEO content generator",
"blog post optimizer", "meta tag generator", "keyword analyzer"
]
missing = [kw for kw in potential_keywords if kw.lower() not in existing_keywords]
return missing[:5]
def _analyze_seasonal_trends(self, keywords_df: pd.DataFrame) -> Dict[str, Any]:
"""Analyze seasonal trends in keyword performance."""
# Placeholder for seasonal analysis
return {
'seasonal_keywords': [],
'trend_analysis': "Seasonal analysis requires historical data spanning multiple seasons"
}
def _categorize_pages(self, pages_df: pd.DataFrame) -> Dict[str, Any]:
"""Categorize pages by type and analyze performance."""
page_types = {
'Blog Posts': {'count': 0, 'total_clicks': 0, 'avg_position': 0},
'Product Pages': {'count': 0, 'total_clicks': 0, 'avg_position': 0},
'Tool Pages': {'count': 0, 'total_clicks': 0, 'avg_position': 0},
'Other': {'count': 0, 'total_clicks': 0, 'avg_position': 0}
}
for _, page_row in pages_df.iterrows():
page_url = page_row['page']
clicks = page_row['clicks']
position = page_row['position']
if '/blog/' in page_url:
page_types['Blog Posts']['count'] += 1
page_types['Blog Posts']['total_clicks'] += clicks
page_types['Blog Posts']['avg_position'] += position
elif '/tools/' in page_url:
page_types['Tool Pages']['count'] += 1
page_types['Tool Pages']['total_clicks'] += clicks
page_types['Tool Pages']['avg_position'] += position
elif '/features/' in page_url or '/product/' in page_url:
page_types['Product Pages']['count'] += 1
page_types['Product Pages']['total_clicks'] += clicks
page_types['Product Pages']['avg_position'] += position
else:
page_types['Other']['count'] += 1
page_types['Other']['total_clicks'] += clicks
page_types['Other']['avg_position'] += position
# Calculate averages
for page_type in page_types:
if page_types[page_type]['count'] > 0:
page_types[page_type]['avg_position'] = round(
page_types[page_type]['avg_position'] / page_types[page_type]['count'], 1
)
return page_types
def _determine_market_position(self, competitive_strength: float) -> str:
"""Determine market position based on competitive strength score."""
if competitive_strength >= 2.5:
return "Market Leader"
elif competitive_strength >= 2.0:
return "Strong Competitor"
elif competitive_strength >= 1.5:
return "Emerging Player"
else:
return "Challenger"
def _extract_immediate_opportunities(self, analysis: str) -> List[str]:
"""Extract immediate opportunities from AI analysis."""
lines = analysis.split('\n')
opportunities = []
in_immediate_section = False
for line in lines:
if 'IMMEDIATE OPTIMIZATION' in line.upper():
in_immediate_section = True
continue
elif 'CONTENT STRATEGY' in line.upper():
in_immediate_section = False
continue
if in_immediate_section and line.strip().startswith('-'):
opportunities.append(line.strip().lstrip('- '))
return opportunities[:5]
def _extract_content_strategy(self, analysis: str) -> List[str]:
"""Extract content strategy recommendations from AI analysis."""
return ["Develop topic clusters", "Create comparison content", "Build FAQ sections"]
def _extract_long_term_strategy(self, analysis: str) -> List[str]:
"""Extract long-term strategy from AI analysis."""
return ["Build domain authority", "Expand to new markets", "Develop thought leadership content"]
def _extract_technical_priorities(self, analysis: str) -> List[str]:
"""Extract technical priorities from AI analysis."""
return ["Improve page speed", "Optimize mobile experience", "Fix crawl errors"]
def render_gsc_integration():
"""Render the Google Search Console integration interface."""
st.title("📊 Google Search Console Intelligence")
st.markdown("**AI-powered insights from your Google Search Console data**")
# Initialize analyzer
if 'gsc_analyzer' not in st.session_state:
st.session_state.gsc_analyzer = GoogleSearchConsoleAnalyzer()
analyzer = st.session_state.gsc_analyzer
# Configuration section
st.header("🔧 Configuration")
with st.expander("📋 Setup Instructions", expanded=False):
st.markdown("""
### Setting up Google Search Console Integration
1. **Verify your website** in Google Search Console
2. **Enable the Search Console API** in Google Cloud Console
3. **Create service account credentials** and download the JSON file
4. **Upload credentials** using the file uploader below
📚 [Detailed Setup Guide](https://developers.google.com/webmaster-tools/search-console-api-original/v3/prereqs)
""")
# Input form
with st.form("gsc_analysis_form"):
col1, col2 = st.columns(2)
with col1:
site_url = st.text_input(
"Site URL",
value="https://example.com",
help="Enter your website URL as registered in Google Search Console"
)
date_range = st.selectbox(
"Analysis Period",
[30, 60, 90, 180],
index=2,
help="Number of days to analyze"
)
with col2:
# Credentials upload (placeholder)
credentials_file = st.file_uploader(
"GSC API Credentials (JSON)",
type=['json'],
help="Upload your Google Search Console API credentials file"
)
demo_mode = st.checkbox(
"Demo Mode",
value=True,
help="Use demo data for testing (no credentials needed)"
)
submit_analysis = st.form_submit_button("📊 Analyze Search Performance", type="primary")
# Process analysis
if submit_analysis:
if site_url and (demo_mode or credentials_file):
with st.spinner("📊 Analyzing Google Search Console data..."):
analysis_results = analyzer.analyze_search_performance(site_url, date_range)
if 'error' not in analysis_results:
st.success("✅ Search Console analysis completed!")
# Store results in session state
st.session_state.gsc_results = analysis_results
# Display results
render_gsc_results_dashboard(analysis_results)
else:
st.error(f"❌ Analysis failed: {analysis_results['error']}")
else:
st.warning("⚠️ Please enter site URL and upload credentials (or enable demo mode).")
# Show previous results if available
elif 'gsc_results' in st.session_state:
st.info("📊 Showing previous analysis results")
render_gsc_results_dashboard(st.session_state.gsc_results)
def render_gsc_results_dashboard(results: Dict[str, Any]):
"""Render comprehensive GSC analysis results."""
# Performance overview
st.header("📊 Search Performance Overview")
overview = results['performance_overview']
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric(
"Total Clicks",
f"{overview['total_clicks']:,}",
delta=f"{overview['clicks_trend']:+.1f}%" if overview['clicks_trend'] != 0 else None
)
with col2:
st.metric(
"Total Impressions",
f"{overview['total_impressions']:,}",
delta=f"{overview['impressions_trend']:+.1f}%" if overview['impressions_trend'] != 0 else None
)
with col3:
st.metric(
"Average CTR",
f"{overview['avg_ctr']:.2f}%"
)
with col4:
st.metric(
"Average Position",
f"{overview['avg_position']:.1f}"
)
# Content opportunities (Most important section)
st.header("🎯 Content Opportunities")
opportunities = results['content_opportunities']
if opportunities:
# Display as interactive table
df_opportunities = pd.DataFrame(opportunities)
st.dataframe(
df_opportunities,
column_config={
"type": "Opportunity Type",
"keyword": "Keyword",
"opportunity": "Description",
"potential_impact": st.column_config.SelectboxColumn(
"Impact",
options=["High", "Medium", "Low"]
),
"current_position": st.column_config.NumberColumn(
"Current Position",
format="%.1f"
),
"impressions": st.column_config.NumberColumn(
"Impressions",
format="%d"
),
"priority": st.column_config.SelectboxColumn(
"Priority",
options=["High", "Medium", "Low"]
)
},
hide_index=True,
use_container_width=True
)
# Detailed analysis tabs
tab1, tab2, tab3, tab4, tab5 = st.tabs([
"🤖 AI Insights",
"🎯 Keyword Analysis",
"📄 Page Performance",
"🏆 Competitive Position",
"🔧 Technical Signals"
])
with tab1:
ai_recs = results.get('ai_recommendations', {})
if ai_recs and 'error' not in ai_recs:
st.subheader("AI-Powered Recommendations")
# Immediate opportunities
immediate_ops = ai_recs.get('immediate_opportunities', [])
if immediate_ops:
st.markdown("#### 🚀 Immediate Optimizations (0-30 days)")
for op in immediate_ops:
st.success(f"{op}")
# Content strategy
content_strategy = ai_recs.get('content_strategy', [])
if content_strategy:
st.markdown("#### 📝 Content Strategy (1-3 months)")
for strategy in content_strategy:
st.info(f"📋 {strategy}")
# Full analysis
full_analysis = ai_recs.get('full_analysis', '')
if full_analysis:
with st.expander("🧠 Complete AI Analysis"):
st.write(full_analysis)
with tab2:
keyword_analysis = results.get('keyword_analysis', {})
if keyword_analysis:
st.subheader("Keyword Performance Analysis")
# Keyword distribution chart
dist = keyword_analysis['keyword_distribution']
fig = px.pie(
values=[dist['positions_1_3'], dist['positions_4_10'], dist['positions_11_20'], dist['positions_21_plus']],
names=['Positions 1-3', 'Positions 4-10', 'Positions 11-20', 'Positions 21+'],
title="Keyword Position Distribution"
)
st.plotly_chart(fig, use_container_width=True)
# High volume keywords
high_volume = keyword_analysis.get('high_volume_keywords', [])
if high_volume:
st.markdown("#### 📈 High Volume Keywords")
st.dataframe(pd.DataFrame(high_volume), hide_index=True)
# Optimization opportunities
opt_opportunities = keyword_analysis.get('optimization_opportunities', [])
if opt_opportunities:
st.markdown("#### 🎯 Optimization Opportunities (Positions 11-20)")
st.dataframe(pd.DataFrame(opt_opportunities), hide_index=True)
with tab3:
page_analysis = results.get('page_analysis', {})
if page_analysis:
st.subheader("Page Performance Analysis")
# Top pages
top_pages = page_analysis.get('top_pages', [])
if top_pages:
st.markdown("#### 🏆 Top Performing Pages")
st.dataframe(pd.DataFrame(top_pages), hide_index=True)
# Underperforming pages
underperforming = page_analysis.get('underperforming_pages', [])
if underperforming:
st.markdown("#### ⚠️ Underperforming Pages (High Impressions, Low CTR)")
st.dataframe(pd.DataFrame(underperforming), hide_index=True)
# Page types performance
page_types = page_analysis.get('page_types_performance', {})
if page_types:
st.markdown("#### 📊 Performance by Page Type")
# Create visualization
types = []
clicks = []
positions = []
for page_type, data in page_types.items():
if data['count'] > 0:
types.append(page_type)
clicks.append(data['total_clicks'])
positions.append(data['avg_position'])
if types:
col1, col2 = st.columns(2)
with col1:
fig_clicks = px.bar(x=types, y=clicks, title="Total Clicks by Page Type")
st.plotly_chart(fig_clicks, use_container_width=True)
with col2:
fig_position = px.bar(x=types, y=positions, title="Average Position by Page Type")
st.plotly_chart(fig_position, use_container_width=True)
with tab4:
competitive_analysis = results.get('competitive_analysis', {})
if competitive_analysis:
st.subheader("Competitive Position Analysis")
col1, col2 = st.columns(2)
with col1:
st.metric("Market Position", competitive_analysis['market_position'])
st.metric("Competitive Strength", f"{competitive_analysis['competitive_strength_score']}/3.0")
with col2:
# Competitive distribution
comp_data = {
'Dominant (1-3)': competitive_analysis['dominant_keywords'],
'Competitive (4-10)': competitive_analysis['competitive_keywords'],
'Losing (11+)': competitive_analysis['losing_keywords']
}
fig = px.bar(
x=list(comp_data.keys()),
y=list(comp_data.values()),
title="Keyword Competitive Position"
)
st.plotly_chart(fig, use_container_width=True)
with tab5:
technical_insights = results.get('technical_insights', {})
if technical_insights:
st.subheader("Technical SEO Signals")
# Crawl issues indicators
crawl_issues = technical_insights.get('crawl_issues_indicators', [])
if crawl_issues:
st.markdown("#### ⚠️ Potential Issues")
for issue in crawl_issues:
st.warning(f"🚨 {issue}")
# Mobile performance
mobile_perf = technical_insights.get('mobile_performance', {})
if mobile_perf:
st.markdown("#### 📱 Mobile Performance")
col1, col2 = st.columns(2)
with col1:
st.metric("Avg Mobile Position", f"{mobile_perf.get('avg_mobile_position', 0):.1f}")
with col2:
if mobile_perf.get('mobile_optimization_needed', False):
st.warning("📱 Mobile optimization needed")
else:
st.success("📱 Mobile performance good")
# Export functionality
st.markdown("---")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("📥 Export Full Report", use_container_width=True):
report_json = json.dumps(results, indent=2, default=str)
st.download_button(
label="Download JSON Report",
data=report_json,
file_name=f"gsc_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json"
)
with col2:
if st.button("📊 Export Opportunities", use_container_width=True):
if opportunities:
df_opportunities = pd.DataFrame(opportunities)
csv = df_opportunities.to_csv(index=False)
st.download_button(
label="Download CSV Opportunities",
data=csv,
file_name=f"content_opportunities_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
with col3:
if st.button("🔄 Refresh Analysis", use_container_width=True):
# Clear cached results to force refresh
if 'gsc_results' in st.session_state:
del st.session_state.gsc_results
st.rerun()
# Main execution
if __name__ == "__main__":
render_gsc_integration()

View File

@@ -0,0 +1,112 @@
import streamlit as st
import base64
import requests
from PIL import Image
import os
def encode_image(image_path):
"""
Encodes an image to base64 format.
Args:
image_path (str): Path to the image file.
Returns:
str: Base64 encoded string of the image.
Raises:
ValueError: If the image path is invalid.
"""
safe_root = os.getenv('SAFE_ROOT_DIRECTORY', '/safe/root/directory') # Use an environment variable for the safe root directory
normalized_path = os.path.normpath(image_path)
if not normalized_path.startswith(safe_root):
raise ValueError("Invalid image path")
with open(normalized_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def get_image_description(image_path):
"""
Generates a description for the given image using an external API.
Args:
image_path (str): Path to the image file.
Returns:
str: Description of the image.
Raises:
ValueError: If the image path is invalid.
"""
safe_root = os.getenv('SAFE_ROOT_DIRECTORY', '/safe/root/directory') # Use an environment variable for the safe root directory
normalized_path = os.path.normpath(image_path)
if not normalized_path.startswith(safe_root):
raise ValueError("Invalid image path")
base64_image = encode_image(normalized_path)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}"
}
payload = {
"model": "gpt-4o-mini",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": """You are an SEO expert specializing in writing optimized Alt text for images.
Your goal is to create clear, descriptive, and concise Alt text that accurately represents
the content and context of the given image. Make sure your response is optimized for search engines and accessibility."""
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
],
"max_tokens": 300
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
response_data = response.json()
# Extract the content field from the response
content = response_data['choices'][0]['message']['content']
return content
def alt_text_gen():
"""
Streamlit app function to generate Alt text for an uploaded image.
"""
st.title("Image Description Generator")
image_path = st.text_input("Enter the full path of the image file", help="Provide the full path to a .jpg, .jpeg, or .png image file")
if image_path:
if os.path.exists(image_path) and image_path.lower().endswith(('jpg', 'jpeg', 'png')):
try:
image = Image.open(image_path)
st.image(image, caption='Uploaded Image', use_column_width=True)
if st.button("Get Image Alt Text"):
with st.spinner("Generating Alt Text..."):
try:
description = get_image_description(image_path)
st.success("Alt Text generated successfully!")
st.write("Alt Text:", description)
except Exception as e:
st.error(f"Error generating description: {e}")
except Exception as e:
st.error(f"Error processing image: {e}")
else:
st.error("Please enter a valid image file path ending with .jpg, .jpeg, or .png")
else:
st.info("Please enter the full path of an image file.")

View File

@@ -0,0 +1,110 @@
import os
import json
import streamlit as st
from tenacity import retry, stop_after_attempt, wait_random_exponential
from loguru import logger
import sys
from ..gpt_providers.text_generation.main_text_generation import llm_text_gen
def metadesc_generator_main():
"""
Streamlit app for generating SEO-optimized blog meta descriptions.
"""
st.title("✍️ Alwrity - AI Blog Meta Description Generator")
st.markdown(
"Create compelling, SEO-optimized meta descriptions in just a few clicks. Perfect for enhancing your blog's click-through rates!"
)
# Input section
with st.expander("**PRO-TIP** - Read the instructions below. 🚀", expanded=True):
col1, col2, _ = st.columns([5, 5, 0.5])
# Column 1: Keywords and Tone
with col1:
keywords = st.text_input(
"🔑 Target Keywords (comma-separated):",
placeholder="e.g., content marketing, SEO, social media, online business",
help="Enter your target keywords, separated by commas. 📝",
)
tone_options = ["General", "Informative", "Engaging", "Humorous", "Intriguing", "Playful"]
tone = st.selectbox(
"🎨 Desired Tone (optional):",
options=tone_options,
help="Choose the overall tone you want for your meta description. 🎭",
)
# Column 2: Search Intent and Language
with col2:
search_type = st.selectbox(
"🔍 Search Intent:",
("Informational Intent", "Commercial Intent", "Transactional Intent", "Navigational Intent"),
index=0,
)
language_options = ["English", "Spanish", "French", "German", "Other"]
language_choice = st.selectbox(
"🌐 Preferred Language:",
options=language_options,
help="Select the language for your meta description. 🗣️",
)
language = (
st.text_input(
"Specify Other Language:",
placeholder="e.g., Italian, Chinese",
help="Enter your preferred language. 🌍",
)
if language_choice == "Other"
else language_choice
)
# Generate Meta Description button
if st.button("**✨ Generate Meta Description ✨**"):
if not keywords.strip():
st.error("**🫣 Target Keywords are required! Please provide at least one keyword.**")
return
with st.spinner("Crafting your Meta descriptions... ⏳"):
blog_metadesc = generate_blog_metadesc(keywords, tone, search_type, language)
if blog_metadesc:
st.success("**🎉 Meta Descriptions Generated Successfully! 🚀**")
with st.expander("**Your SEO-Boosting Blog Meta Descriptions 🎆🎇**", expanded=True):
st.markdown(blog_metadesc)
else:
st.error("💥 **Failed to generate blog meta description. Please try again!**")
def generate_blog_metadesc(keywords, tone, search_type, language):
"""
Generate blog meta descriptions using LLM.
Args:
keywords (str): Comma-separated target keywords.
tone (str): Desired tone for the meta description.
search_type (str): Search intent type.
language (str): Preferred language for the description.
Returns:
str: Generated meta descriptions or error message.
"""
prompt = f"""
Craft 3 engaging and SEO-friendly meta descriptions for a blog post based on the following details:
Blog Post Keywords: {keywords}
Search Intent Type: {search_type}
Desired Tone: {tone}
Preferred Language: {language}
Output Format:
Respond with 3 compelling and concise meta descriptions, approximately 155-160 characters long, that incorporate the target keywords, reflect the blog post content, resonate with the target audience, and entice users to click through to read the full article.
"""
try:
return llm_text_gen(prompt)
except Exception as err:
logger.error(f"Error generating meta description: {err}")
st.error(f"💥 Error: Failed to generate response from LLM: {err}")
return None

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,129 @@
import streamlit as st
import requests
from bs4 import BeautifulSoup
from ..gpt_providers.text_generation.main_text_generation import llm_text_gen
def generate_og_tags(url, title_hint, description_hint, platform="General"):
"""
Generate Open Graph tags based on the provided URL, title hint, description hint, and platform.
Args:
url (str): The URL of the webpage.
title_hint (str): A hint for the title.
description_hint (str): A hint for the description.
platform (str): The platform for which to generate the tags (General, Facebook, or Twitter).
Returns:
str: The generated Open Graph tags or an error message.
"""
# Create a prompt for the text generation model
prompt = (
f"Generate Open Graph tags for the following page:\nURL: {url}\n"
f"Title hint: {title_hint}\nDescription hint: {description_hint}"
)
if platform == "Facebook":
prompt += "\nSpecifically for Facebook"
elif platform == "Twitter":
prompt += "\nSpecifically for Twitter"
try:
# Generate Open Graph tags using the text generation model
response = llm_text_gen(prompt)
return response
except Exception as err:
st.error(f"Failed to generate Open Graph tags: {err}")
return None
def extract_default_og_tags(url):
"""
Extract default Open Graph tags from the provided URL.
Args:
url (str): The URL of the webpage.
Returns:
tuple: A tuple containing the title, description, and image URL, or None in case of an error.
"""
try:
# Fetch the HTML content of the URL
response = requests.get(url)
response.raise_for_status()
# Parse the HTML content using BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')
# Extract the title, description, and image URL
title = soup.find('title').text if soup.find('title') else None
description = soup.find('meta', attrs={'name': 'description'})['content'] if soup.find('meta', attrs={'name': 'description'}) else None
image_url = soup.find('meta', attrs={'property': 'og:image'})['content'] if soup.find('meta', attrs={'property': 'og:image'}) else None
return title, description, image_url
except requests.exceptions.RequestException as req_err:
st.error(f"Error fetching the URL: {req_err}")
return None, None, None
except Exception as err:
st.error(f"Error parsing the HTML content: {err}")
return None, None, None
def og_tag_generator():
"""Main function to run the Streamlit app."""
st.title("AI Open Graph Tag Generator")
# Platform selection
platform = st.selectbox(
"**Select the platform**",
["General", "Facebook", "Twitter"],
help="Choose the platform for which you want to generate Open Graph tags."
)
# URL input
url = st.text_input(
"**Enter the URL of the page to generate Open Graph tags for:**",
placeholder="e.g., https://example.com",
help="Provide the URL of the page you want to generate Open Graph tags for."
)
if url:
# Extract default Open Graph tags
title, description, image_url = extract_default_og_tags(url)
# Title hint input
title_hint = st.text_input(
"**Modify existing title or suggest a new one (optional):**",
value=title if title else "",
placeholder="e.g., Amazing Blog Post Title"
)
# Description hint input
description_hint = st.text_area(
"**Modify existing description or suggest a new one (optional):**",
value=description if description else "",
placeholder="e.g., This is a detailed description of the content."
)
# Image URL hint input
image_hint = st.text_input(
"**Use this image or suggest a new URL (optional):**",
value=image_url if image_url else "",
placeholder="e.g., https://example.com/image.jpg"
)
# Generate Open Graph tags
if st.button("Generate Open Graph Tags"):
with st.spinner("Generating Open Graph tags..."):
try:
og_tags = generate_og_tags(url, title_hint, description_hint, platform)
if og_tags:
st.success("Open Graph tags generated successfully!")
st.markdown(og_tags)
else:
st.error("Failed to generate Open Graph tags.")
except Exception as e:
st.error(f"Failed to generate Open Graph tags: {e}")
else:
st.info("Please enter a URL to generate Open Graph tags.")

View File

@@ -0,0 +1,2 @@
ogImage TBD

View File

@@ -0,0 +1,187 @@
import os
import sys
import tinify
from PIL import Image
from loguru import logger
from dotenv import load_dotenv
import streamlit as st
from tempfile import NamedTemporaryFile
# Load environment variables
load_dotenv()
# Set Tinyfy API key from environment variable
TINIFY_API_KEY = os.getenv('TINIFY_API_KEY')
if TINIFY_API_KEY:
tinify.key = TINIFY_API_KEY
def setup_logger() -> None:
"""Configure the logger."""
logger.remove()
logger.add(
sys.stdout,
colorize=True,
format="<level>{level}</level>|<green>{file}:{line}:{function}</green>| {message}"
)
setup_logger()
def compress_image(image: Image.Image, quality: int = 45, resize: tuple = None, preserve_exif: bool = False) -> Image.Image:
"""
Compress and optionally resize an image.
Args:
image (PIL.Image): Image object to compress.
quality (int): Quality of the output image (1-100).
resize (tuple): Tuple (width, height) to resize the image.
preserve_exif (bool): Preserve EXIF data if True.
Returns:
PIL.Image: The compressed and resized image object.
"""
try:
if image.mode == 'RGBA':
logger.info("Converting RGBA image to RGB.")
image = image.convert('RGB')
exif = image.info.get('exif') if preserve_exif and 'exif' in image.info else None
if resize:
image = image.resize(resize, Image.LANCZOS)
logger.info(f"Resized image to {resize}")
with NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
temp_path = temp_file.name
try:
image.save(temp_path, optimize=True, quality=quality, exif=exif)
except Exception as exif_error:
logger.warning(f"Error saving image with EXIF: {exif_error}. Saving without EXIF.")
image.save(temp_path, optimize=True, quality=quality)
logger.info("Image compression successful.")
return Image.open(temp_path)
except Exception as e:
logger.error(f"Error compressing image: {e}")
st.error("Failed to compress the image. Please try again.")
return None
def convert_to_webp(image: Image.Image, image_path: str) -> str:
"""
Convert an image to WebP format.
Args:
image (PIL.Image): Image object to convert.
image_path (str): Path to save the WebP image.
Returns:
str: Path to the WebP image.
"""
try:
webp_path = os.path.splitext(image_path)[0] + '.webp'
image.save(webp_path, 'WEBP', quality=80, method=6)
return webp_path
except Exception as e:
logger.error(f"Error converting image to WebP: {e}")
st.error("Failed to convert the image to WebP format. Please try again.")
return None
def compress_image_tinyfy(image_path: str) -> None:
"""
Compress an image using Tinyfy API.
Args:
image_path (str): Path to the image to be compressed.
Returns:
None
"""
try:
if not tinify.key:
logger.warning("Tinyfy API key is not set. Skipping Tinyfy compression.")
return
source = tinify.from_file(image_path)
source.to_file(image_path)
logger.info("Tinyfy compression successful.")
except tinify.errors.AccountError:
logger.error("Verify your Tinyfy API key and account limit.")
st.warning("Tinyfy compression failed. Check your API key and account limit.")
except Exception as e:
logger.error(f"Error during Tinyfy compression: {e}")
st.warning("Tinyfy compression failed. Ensure the API key is set.")
def optimize_image(image: Image.Image, image_path: str, quality: int, resize: tuple, preserve_exif: bool) -> str:
"""
Optimize the image by compressing and converting it to WebP, with optional Tinyfy compression.
Args:
image (PIL.Image): The original image.
image_path (str): The path to the image file.
quality (int): Quality level for compression.
resize (tuple): Dimensions to resize the image.
preserve_exif (bool): Whether to preserve EXIF data.
Returns:
str: Path to the optimized WebP image, or None if failed.
"""
logger.info("Starting image optimization process...")
compressed_image = compress_image(image, quality, resize, preserve_exif)
if compressed_image is None:
return None
webp_path = convert_to_webp(compressed_image, image_path)
if webp_path is None:
return None
if tinify.key:
compress_image_tinyfy(webp_path)
else:
logger.info("Tinyfy key not provided, skipping Tinyfy compression.")
return webp_path
def main_img_optimizer() -> None:
st.title("ALwrity Image Optimizer")
st.markdown("## Upload an image to optimize its size and format.")
input_tinify_key = st.text_input("Optional: Enter your Tinyfy API Key")
if input_tinify_key:
tinify.key = input_tinify_key
uploaded_file = st.file_uploader("Upload an image", type=['jpg', 'jpeg', 'png', 'gif', 'bmp', 'webp'])
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, caption="Original Image", use_column_width=True)
quality = st.slider("Compression Quality", 1, 100, 45)
preserve_exif = st.checkbox("Preserve EXIF Data", value=False)
resize = st.checkbox("Resize Image")
if resize:
width = st.number_input("Width", value=image.width)
height = st.number_input("Height", value=image.height)
resize_dims = (width, height)
else:
resize_dims = None
if st.button("Optimize Image"):
with st.spinner("Optimizing..."):
if tinify.key:
st.info("Tinyfy compression will be applied.")
webp_path = optimize_image(image, uploaded_file.name, quality, resize_dims, preserve_exif)
if webp_path:
st.image(webp_path, caption="Optimized Image (WebP)", use_column_width=True)
st.success("Image optimization completed!")
with open(webp_path, "rb") as file:
st.download_button(
label="Download Optimized Image",
data=file,
file_name=os.path.basename(webp_path),
mime="image/webp"
)

View File

@@ -0,0 +1,340 @@
"""
FastAPI endpoint for the Comprehensive SEO Analyzer
Provides data for the React SEO Dashboard
"""
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, HttpUrl
from typing import List, Optional, Dict, Any
from datetime import datetime
import json
from .comprehensive_seo_analyzer import ComprehensiveSEOAnalyzer, SEOAnalysisResult
app = FastAPI(
title="Comprehensive SEO Analyzer API",
description="API for analyzing website SEO performance with actionable insights",
version="1.0.0"
)
# Initialize the analyzer
seo_analyzer = ComprehensiveSEOAnalyzer()
class SEOAnalysisRequest(BaseModel):
url: HttpUrl
target_keywords: Optional[List[str]] = None
class SEOAnalysisResponse(BaseModel):
url: str
timestamp: datetime
overall_score: int
health_status: str
critical_issues: List[str]
warnings: List[str]
recommendations: List[str]
data: Dict[str, Any]
success: bool
message: str
@app.post("/analyze-seo", response_model=SEOAnalysisResponse)
async def analyze_seo(request: SEOAnalysisRequest):
"""
Analyze a URL for comprehensive SEO performance
Args:
request: SEOAnalysisRequest containing URL and optional target keywords
Returns:
SEOAnalysisResponse with detailed analysis results
"""
try:
# Convert URL to string
url_str = str(request.url)
# Perform analysis
result = seo_analyzer.analyze_url(url_str, request.target_keywords)
# Convert to response format
response_data = {
'url': result.url,
'timestamp': result.timestamp,
'overall_score': result.overall_score,
'health_status': result.health_status,
'critical_issues': result.critical_issues,
'warnings': result.warnings,
'recommendations': result.recommendations,
'data': result.data,
'success': True,
'message': f"SEO analysis completed successfully for {result.url}"
}
return SEOAnalysisResponse(**response_data)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error analyzing SEO: {str(e)}"
)
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"timestamp": datetime.now(),
"service": "Comprehensive SEO Analyzer API"
}
@app.get("/analysis-summary/{url:path}")
async def get_analysis_summary(url: str):
"""
Get a quick summary of SEO analysis for a URL
Args:
url: The URL to analyze
Returns:
Summary of SEO analysis
"""
try:
# Ensure URL has protocol
if not url.startswith(('http://', 'https://')):
url = f"https://{url}"
# Perform analysis
result = seo_analyzer.analyze_url(url)
# Create summary
summary = {
"url": result.url,
"overall_score": result.overall_score,
"health_status": result.health_status,
"critical_issues_count": len(result.critical_issues),
"warnings_count": len(result.warnings),
"recommendations_count": len(result.recommendations),
"top_issues": result.critical_issues[:3],
"top_recommendations": result.recommendations[:3],
"analysis_timestamp": result.timestamp.isoformat()
}
return summary
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error getting analysis summary: {str(e)}"
)
@app.get("/seo-metrics/{url:path}")
async def get_seo_metrics(url: str):
"""
Get detailed SEO metrics for dashboard display
Args:
url: The URL to analyze
Returns:
Detailed SEO metrics for React dashboard
"""
try:
# Ensure URL has protocol
if not url.startswith(('http://', 'https://')):
url = f"https://{url}"
# Perform analysis
result = seo_analyzer.analyze_url(url)
# Extract metrics for dashboard
metrics = {
"overall_score": result.overall_score,
"health_status": result.health_status,
"url_structure_score": result.data.get('url_structure', {}).get('score', 0),
"meta_data_score": result.data.get('meta_data', {}).get('score', 0),
"content_score": result.data.get('content_analysis', {}).get('score', 0),
"technical_score": result.data.get('technical_seo', {}).get('score', 0),
"performance_score": result.data.get('performance', {}).get('score', 0),
"accessibility_score": result.data.get('accessibility', {}).get('score', 0),
"user_experience_score": result.data.get('user_experience', {}).get('score', 0),
"security_score": result.data.get('security_headers', {}).get('score', 0)
}
# Add detailed data for each category
dashboard_data = {
"metrics": metrics,
"critical_issues": result.critical_issues,
"warnings": result.warnings,
"recommendations": result.recommendations,
"detailed_analysis": {
"url_structure": result.data.get('url_structure', {}),
"meta_data": result.data.get('meta_data', {}),
"content_analysis": result.data.get('content_analysis', {}),
"technical_seo": result.data.get('technical_seo', {}),
"performance": result.data.get('performance', {}),
"accessibility": result.data.get('accessibility', {}),
"user_experience": result.data.get('user_experience', {}),
"security_headers": result.data.get('security_headers', {}),
"keyword_analysis": result.data.get('keyword_analysis', {})
},
"timestamp": result.timestamp.isoformat(),
"url": result.url
}
return dashboard_data
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error getting SEO metrics: {str(e)}"
)
@app.post("/batch-analyze")
async def batch_analyze(urls: List[str]):
"""
Analyze multiple URLs in batch
Args:
urls: List of URLs to analyze
Returns:
Batch analysis results
"""
try:
results = []
for url in urls:
try:
# Ensure URL has protocol
if not url.startswith(('http://', 'https://')):
url = f"https://{url}"
# Perform analysis
result = seo_analyzer.analyze_url(url)
# Add to results
results.append({
"url": result.url,
"overall_score": result.overall_score,
"health_status": result.health_status,
"critical_issues_count": len(result.critical_issues),
"warnings_count": len(result.warnings),
"success": True
})
except Exception as e:
# Add error result
results.append({
"url": url,
"overall_score": 0,
"health_status": "error",
"critical_issues_count": 0,
"warnings_count": 0,
"success": False,
"error": str(e)
})
return {
"total_urls": len(urls),
"successful_analyses": len([r for r in results if r['success']]),
"failed_analyses": len([r for r in results if not r['success']]),
"results": results
}
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error in batch analysis: {str(e)}"
)
# Enhanced prompts for better results
ENHANCED_PROMPTS = {
"critical_issue": "🚨 CRITICAL: This issue is severely impacting your SEO performance and must be fixed immediately.",
"warning": "⚠️ WARNING: This could be improved to boost your search rankings.",
"recommendation": "💡 RECOMMENDATION: Implement this to improve your SEO score.",
"excellent": "🎉 EXCELLENT: Your SEO is performing very well in this area!",
"good": "✅ GOOD: Your SEO is performing well, with room for minor improvements.",
"needs_improvement": "🔧 NEEDS IMPROVEMENT: Several areas need attention to boost your SEO.",
"poor": "❌ POOR: Significant improvements needed across multiple areas."
}
def enhance_analysis_result(result: SEOAnalysisResult) -> SEOAnalysisResult:
"""
Enhance analysis results with better prompts and user-friendly language
"""
# Enhance critical issues
enhanced_critical_issues = []
for issue in result.critical_issues:
enhanced_issue = f"{ENHANCED_PROMPTS['critical_issue']} {issue}"
enhanced_critical_issues.append(enhanced_issue)
# Enhance warnings
enhanced_warnings = []
for warning in result.warnings:
enhanced_warning = f"{ENHANCED_PROMPTS['warning']} {warning}"
enhanced_warnings.append(enhanced_warning)
# Enhance recommendations
enhanced_recommendations = []
for rec in result.recommendations:
enhanced_rec = f"{ENHANCED_PROMPTS['recommendation']} {rec}"
enhanced_recommendations.append(enhanced_rec)
# Create enhanced result
enhanced_result = SEOAnalysisResult(
url=result.url,
timestamp=result.timestamp,
overall_score=result.overall_score,
health_status=result.health_status,
critical_issues=enhanced_critical_issues,
warnings=enhanced_warnings,
recommendations=enhanced_recommendations,
data=result.data
)
return enhanced_result
@app.post("/analyze-seo-enhanced", response_model=SEOAnalysisResponse)
async def analyze_seo_enhanced(request: SEOAnalysisRequest):
"""
Analyze a URL with enhanced, user-friendly prompts
Args:
request: SEOAnalysisRequest containing URL and optional target keywords
Returns:
SEOAnalysisResponse with enhanced, user-friendly analysis results
"""
try:
# Convert URL to string
url_str = str(request.url)
# Perform analysis
result = seo_analyzer.analyze_url(url_str, request.target_keywords)
# Enhance results
enhanced_result = enhance_analysis_result(result)
# Convert to response format
response_data = {
'url': enhanced_result.url,
'timestamp': enhanced_result.timestamp,
'overall_score': enhanced_result.overall_score,
'health_status': enhanced_result.health_status,
'critical_issues': enhanced_result.critical_issues,
'warnings': enhanced_result.warnings,
'recommendations': enhanced_result.recommendations,
'data': enhanced_result.data,
'success': True,
'message': f"Enhanced SEO analysis completed successfully for {enhanced_result.url}"
}
return SEOAnalysisResponse(**response_data)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error analyzing SEO: {str(e)}"
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)

View File

@@ -0,0 +1,130 @@
import streamlit as st
import json
from datetime import date
from dotenv import load_dotenv
from ..ai_web_researcher.firecrawl_web_crawler import scrape_url
from ..gpt_providers.text_generation.main_text_generation import llm_text_gen
# Load environment variables
load_dotenv()
# Define a dictionary for schema types
schema_types = {
"Article": {
"fields": ["Headline", "Author", "Date Published", "Keywords"],
"schema_type": "Article",
},
"Product": {
"fields": ["Name", "Description", "Price", "Brand", "Image URL"],
"schema_type": "Product",
},
"Recipe": {
"fields": ["Name", "Ingredients", "Cooking Time", "Serving Size", "Image URL"],
"schema_type": "Recipe",
},
"Event": {
"fields": ["Name", "Start Date", "End Date", "Location", "Description"],
"schema_type": "Event",
},
"LocalBusiness": {
"fields": ["Name", "Address", "Phone Number", "Opening Hours", "Image URL"],
"schema_type": "LocalBusiness",
},
# ... (add more schema types as needed)
}
def generate_json_data(content_type, details, url):
"""Generates structured data (JSON-LD) based on user input."""
try:
scraped_text = scrape_url(url)
except Exception as err:
st.error(f"Failed to scrape web page from URL: {url} - Error: {err}")
return
schema = schema_types.get(content_type)
if not schema:
st.error(f"Invalid content type: {content_type}")
return
data = {
"@context": "https://schema.org",
"@type": schema["schema_type"],
}
for field in schema["fields"]:
value = details.get(field)
if isinstance(value, date):
value = value.isoformat()
data[field] = value if value else "N/A" # Use placeholder values if input is missing
if url:
data['url'] = url
llm_structured_data = get_llm_structured_data(content_type, data, scraped_text)
return llm_structured_data
def get_llm_structured_data(content_type, data, scraped_text):
"""Function to get structured data from LLM."""
prompt = f"""Given the following information:
HTML Content: <<<HTML>>> {scraped_text} <<<END_HTML>>>
Content Type: <<<CONTENT_TYPE>>> {content_type} <<<END_CONTENT_TYPE>>>
Additional Relevant Data: <<<ADDITIONAL_DATA>>> {data} <<<END_ADDITIONAL_DATA>>>
Create a detailed structured data (JSON-LD) script for SEO purposes.
The structured data should help search engines understand the content and features of the webpage, enhancing its visibility and potential for rich snippets in search results.
Detailed Steps:
Parse the HTML content to extract relevant information like the title, main heading, and body content.
Use the contentType to determine the structured data type (e.g., Article, Product, Recipe).
Integrate the additional relevant data (e.g., author, datePublished, keywords) into the structured data.
Ensure all URLs, images, and other attributes are correctly formatted and included.
Validate the generated JSON-LD to ensure it meets schema.org standards and is free of errors.
Expected Output:
Generate a JSON-LD structured data snippet based on the provided inputs."""
try:
response = llm_text_gen(prompt)
return response
except Exception as err:
st.error(f"Failed to get response from LLM: {err}")
return
def ai_structured_data():
st.title("📝 Generate Structured Data for SEO 🚀")
st.markdown("**Make your content more discoverable with rich snippets.**")
content_type = st.selectbox("**Select Content Type**", list(schema_types.keys()))
details = {}
schema_fields = schema_types[content_type]["fields"]
num_fields = len(schema_fields)
url = st.text_input("**URL :**", placeholder="Enter the URL of your webpage")
for i in range(0, num_fields, 2):
cols = st.columns(2)
for j in range(2):
if i + j < num_fields:
field = schema_fields[i + j]
if "Date" in field:
details[field] = cols[j].date_input(field)
else:
details[field] = cols[j].text_input(field, placeholder=f"Enter {field.lower()}")
if st.button("Generate Structured Data"):
if not url:
st.error("URL is required to generate structured data.")
return
structured_data = generate_json_data(content_type, details, url)
if structured_data:
st.subheader("Generated Structured Data (JSON-LD):")
st.markdown(structured_data)
st.download_button(
label="Download JSON-LD",
data=structured_data,
file_name=f"{content_type}_structured_data.json",
mime="application/json",
)

View File

@@ -0,0 +1,340 @@
import streamlit as st
import advertools as adv
import pandas as pd
import plotly.graph_objects as go
from urllib.error import URLError
import xml.etree.ElementTree as ET
import requests
def main():
"""
Main function to run the Sitemap Analyzer Streamlit app.
"""
st.title("📊 Sitemap Analyzer")
st.write("""
This tool analyzes a website's sitemap to understand its content structure and publishing trends.
Enter a sitemap URL to start your analysis.
""")
sitemap_url = st.text_input(
"Please enter the sitemap URL:",
"https://www.example.com/sitemap.xml"
)
if st.button("Analyze Sitemap"):
try:
sitemap_df = fetch_all_sitemaps(sitemap_url)
if sitemap_df is not None and not sitemap_df.empty:
sitemap_df = process_lastmod_column(sitemap_df)
ppmonth = analyze_content_trends(sitemap_df)
sitemap_df = categorize_and_shorten_sitemaps(sitemap_df)
display_key_metrics(sitemap_df, ppmonth)
plot_sitemap_content_distribution(sitemap_df)
plot_content_trends(ppmonth)
plot_content_type_breakdown(sitemap_df)
plot_publishing_frequency(sitemap_df)
st.success("🎉 Analysis complete!")
else:
st.error("No valid URLs found in the sitemap.")
except URLError as e:
st.error(f"Error fetching the sitemap: {e}")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
def fetch_all_sitemaps(sitemap_url):
"""
Fetches all sitemaps from the provided sitemap URL and concatenates their URLs into a DataFrame.
Parameters:
sitemap_url (str): The URL of the sitemap.
Returns:
DataFrame: A DataFrame containing all URLs from the sitemaps.
"""
st.write(f"🚀 Fetching and analyzing the sitemap: {sitemap_url}...")
try:
sitemap_df = fetch_sitemap(sitemap_url)
if sitemap_df is not None:
all_sitemaps = sitemap_df.loc[
sitemap_df['loc'].str.contains('sitemap'),
'loc'
].tolist()
if all_sitemaps:
st.write(
f"🔄 Found {len(all_sitemaps)} additional sitemaps. Fetching data from them..."
)
all_urls_df = pd.DataFrame()
for sitemap in all_sitemaps:
try:
st.write(f"Fetching URLs from {sitemap}...")
temp_df = fetch_sitemap(sitemap)
if temp_df is not None:
all_urls_df = pd.concat(
[all_urls_df, temp_df], ignore_index=True
)
except Exception as e:
st.error(f"Error fetching {sitemap}: {e}")
st.write(
f"✅ Successfully fetched {len(all_urls_df)} URLs from all sitemaps."
)
return all_urls_df
else:
st.write(f"✅ Successfully fetched {len(sitemap_df)} URLs from the main sitemap.")
return sitemap_df
else:
return None
except Exception as e:
st.error(f"⚠️ Error fetching the sitemap: {e}")
return None
def fetch_sitemap(url):
"""
Fetches and parses the sitemap from the provided URL.
Parameters:
url (str): The URL of the sitemap.
Returns:
DataFrame: A DataFrame containing the URLs from the sitemap.
"""
try:
response = requests.get(url)
response.raise_for_status()
ET.fromstring(response.content)
sitemap_df = adv.sitemap_to_df(url)
return sitemap_df
except requests.RequestException as e:
st.error(f"⚠️ Request error: {e}")
return None
except ET.ParseError as e:
st.error(f"⚠️ XML parsing error: {e}")
return None
def process_lastmod_column(sitemap_df):
"""
Processes the 'lastmod' column in the sitemap DataFrame by converting it to DateTime format and setting it as the index.
Parameters:
sitemap_df (DataFrame): The sitemap DataFrame.
Returns:
DataFrame: The processed sitemap DataFrame with 'lastmod' as the index.
"""
st.write("📅 Converting 'lastmod' column to DateTime format and setting it as the index...")
try:
sitemap_df = sitemap_df.dropna(subset=['lastmod'])
sitemap_df['lastmod'] = pd.to_datetime(sitemap_df['lastmod'])
sitemap_df.set_index('lastmod', inplace=True)
st.write("'lastmod' column successfully converted to DateTime format and set as the index.")
return sitemap_df
except Exception as e:
st.error(f"⚠️ Error processing the 'lastmod' column: {e}")
return None
def categorize_and_shorten_sitemaps(sitemap_df):
"""
Categorizes and shortens the sitemap names in the sitemap DataFrame.
Parameters:
sitemap_df (DataFrame): The sitemap DataFrame.
Returns:
DataFrame: The sitemap DataFrame with categorized and shortened sitemap names.
"""
st.write("🔍 Categorizing and shortening sitemap names...")
try:
sitemap_df['sitemap_name'] = sitemap_df['sitemap'].str.split('/').str[4]
sitemap_df['sitemap_name'] = sitemap_df['sitemap_name'].replace({
'sitemap-site-kasko-fiyatlari.xml': 'Kasko',
'sitemap-site-bireysel.xml': 'Personal',
'sitemap-site-kurumsal.xml': 'Cooperate',
'sitemap-site-arac-sigortasi.xml': 'Car',
'sitemap-site.xml': 'Others'
})
st.write("✅ Sitemap names categorized and shortened.")
return sitemap_df
except Exception as e:
st.error(f"⚠️ Error categorizing sitemap names: {e}")
return sitemap_df
def analyze_content_trends(sitemap_df):
"""
Analyzes content publishing trends in the sitemap DataFrame.
Parameters:
sitemap_df (DataFrame): The sitemap DataFrame.
Returns:
Series: A Series representing the number of contents published each month.
"""
st.write("📅 Analyzing content publishing trends...")
try:
ppmonth = sitemap_df.resample('M').size()
sitemap_df['monthly_count'] = sitemap_df.index.to_period('M').value_counts().sort_index()
st.write("✅ Content trends analysis completed.")
return ppmonth
except Exception as e:
st.error(f"⚠️ Error during content trends analysis: {e}")
return pd.Series()
def display_key_metrics(sitemap_df, ppmonth):
"""
Displays key metrics of the sitemap analysis.
Parameters:
sitemap_df (DataFrame): The sitemap DataFrame.
ppmonth (Series): The Series representing the number of contents published each month.
"""
st.write("### Key Metrics")
total_urls = len(sitemap_df)
total_articles = ppmonth.sum()
average_frequency = ppmonth.mean()
st.write(f"**Total URLs Found:** {total_urls:,}")
st.write(f"**Total Articles Published:** {total_articles:,}")
st.write(f"**Average Monthly Publishing Frequency:** {average_frequency:.2f} articles/month")
def plot_sitemap_content_distribution(sitemap_df):
"""
Plots the content distribution by sitemap categories.
Parameters:
sitemap_df (DataFrame): The sitemap DataFrame.
"""
st.write("📊 Visualizing content amount by sitemap categories...")
try:
if 'sitemap_name' in sitemap_df.columns:
stmc = sitemap_df.groupby('sitemap_name').size()
fig = go.Figure()
fig.add_bar(x=stmc.index, y=stmc.values, name='Sitemap Categories')
fig.update_layout(
title='Content Amount by Sitemap Categories',
xaxis_title='Sitemap Categories',
yaxis_title='Number of Articles',
paper_bgcolor='#E5ECF6'
)
st.plotly_chart(fig)
else:
st.warning("⚠️ The 'sitemap_name' column is missing in the data.")
except Exception as e:
st.error(f"⚠️ Error during sitemap content distribution plotting: {e}")
def plot_content_trends(ppmonth):
"""
Plots the content publishing trends over time.
Parameters:
ppmonth (Series): The Series representing the number of contents published each month.
"""
st.write("📈 Plotting content publishing trends over time...")
try:
fig = go.Figure()
fig.add_scatter(x=ppmonth.index, y=ppmonth.values, mode='lines+markers', name='Publishing Trends')
fig.update_layout(
title='Content Publishing Trends Over Time',
xaxis_title='Month',
yaxis_title='Number of Articles',
paper_bgcolor='#E5ECF6'
)
st.plotly_chart(fig)
except Exception as e:
st.error(f"⚠️ Error during content trends plotting: {e}")
def plot_content_type_breakdown(sitemap_df):
"""
Plots the content type breakdown.
Parameters:
sitemap_df (DataFrame): The sitemap DataFrame.
"""
st.write("🔍 Plotting content type breakdown...")
try:
if 'sitemap_name' in sitemap_df.columns and not sitemap_df['sitemap_name'].empty:
content_type_counts = sitemap_df['sitemap_name'].value_counts()
st.write("Content Type Counts:", content_type_counts)
if not content_type_counts.empty:
fig = go.Figure(data=[go.Pie(labels=content_type_counts.index, values=content_type_counts.values)])
fig.update_layout(
title='Content Type Breakdown',
paper_bgcolor='#E5ECF6'
)
st.plotly_chart(fig)
else:
st.warning("⚠️ No content types to display.")
else:
st.warning("⚠️ The 'sitemap_name' column is missing or empty.")
except Exception as e:
st.error(f"⚠️ Error during content type breakdown plotting: {e}")
def plot_publishing_frequency(sitemap_df):
"""
Plots the publishing frequency by month.
Parameters:
sitemap_df (DataFrame): The sitemap DataFrame.
"""
st.write("📆 Plotting publishing frequency by month...")
try:
if not sitemap_df.empty:
frequency_by_month = sitemap_df.index.to_period('M').value_counts().sort_index()
frequency_by_month.index = frequency_by_month.index.astype(str)
fig = go.Figure()
fig.add_bar(x=frequency_by_month.index, y=frequency_by_month.values, name='Publishing Frequency')
fig.update_layout(
title='Publishing Frequency by Month',
xaxis_title='Month',
yaxis_title='Number of Articles',
paper_bgcolor='#E5ECF6'
)
st.plotly_chart(fig)
else:
st.warning("⚠️ No data available to plot publishing frequency.")
except Exception as e:
st.error(f"⚠️ Error during publishing frequency plotting: {e}")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,22 @@
"""
Technical SEO Crawler Package.
This package provides comprehensive technical SEO analysis capabilities
with advertools integration and AI-powered recommendations.
Components:
- TechnicalSEOCrawler: Core crawler with technical analysis
- TechnicalSEOCrawlerUI: Streamlit interface for the crawler
"""
from .crawler import TechnicalSEOCrawler
from .ui import TechnicalSEOCrawlerUI, render_technical_seo_crawler
__version__ = "1.0.0"
__author__ = "ALwrity"
__all__ = [
'TechnicalSEOCrawler',
'TechnicalSEOCrawlerUI',
'render_technical_seo_crawler'
]

View File

@@ -0,0 +1,709 @@
"""
Comprehensive Technical SEO Crawler using Advertools Integration.
This module provides advanced site-wide technical SEO analysis using:
- adv.crawl: Complete website crawling and analysis
- adv.crawl_headers: HTTP headers and server analysis
- adv.crawl_images: Image optimization analysis
- adv.url_to_df: URL structure optimization
- AI-powered technical recommendations
"""
import streamlit as st
import pandas as pd
import advertools as adv
from typing import Dict, Any, List, Optional, Tuple
from urllib.parse import urlparse, urljoin
import tempfile
import os
from datetime import datetime
import json
from collections import Counter, defaultdict
from loguru import logger
import numpy as np
# Import existing modules
from lib.gpt_providers.text_generation.main_text_generation import llm_text_gen
from lib.utils.website_analyzer.analyzer import WebsiteAnalyzer
class TechnicalSEOCrawler:
"""Comprehensive technical SEO crawler with advertools integration."""
def __init__(self):
"""Initialize the technical SEO crawler."""
self.temp_dir = tempfile.mkdtemp()
logger.info("TechnicalSEOCrawler initialized")
def analyze_website_technical_seo(self, website_url: str, crawl_depth: int = 3,
max_pages: int = 500) -> Dict[str, Any]:
"""
Perform comprehensive technical SEO analysis.
Args:
website_url: Website URL to analyze
crawl_depth: How deep to crawl (1-5)
max_pages: Maximum pages to crawl (50-1000)
Returns:
Comprehensive technical SEO analysis results
"""
try:
st.info("🚀 Starting Comprehensive Technical SEO Crawl...")
# Initialize results structure
results = {
'analysis_timestamp': datetime.utcnow().isoformat(),
'website_url': website_url,
'crawl_settings': {
'depth': crawl_depth,
'max_pages': max_pages
},
'crawl_overview': {},
'technical_issues': {},
'performance_analysis': {},
'content_analysis': {},
'url_structure': {},
'image_optimization': {},
'security_headers': {},
'mobile_seo': {},
'structured_data': {},
'ai_recommendations': {}
}
# Phase 1: Core Website Crawl
with st.expander("🕷️ Website Crawling Progress", expanded=True):
crawl_data = self._perform_comprehensive_crawl(website_url, crawl_depth, max_pages)
results['crawl_overview'] = crawl_data
st.success(f"✅ Crawled {crawl_data.get('pages_crawled', 0)} pages")
# Phase 2: Technical Issues Detection
with st.expander("🔍 Technical Issues Analysis", expanded=True):
technical_issues = self._analyze_technical_issues(crawl_data)
results['technical_issues'] = technical_issues
st.success("✅ Identified technical SEO issues")
# Phase 3: Performance Analysis
with st.expander("⚡ Performance Analysis", expanded=True):
performance = self._analyze_performance_metrics(crawl_data)
results['performance_analysis'] = performance
st.success("✅ Analyzed website performance metrics")
# Phase 4: Content & Structure Analysis
with st.expander("📊 Content Structure Analysis", expanded=True):
content_analysis = self._analyze_content_structure(crawl_data)
results['content_analysis'] = content_analysis
st.success("✅ Analyzed content structure and optimization")
# Phase 5: URL Structure Optimization
with st.expander("🔗 URL Structure Analysis", expanded=True):
url_analysis = self._analyze_url_structure(crawl_data)
results['url_structure'] = url_analysis
st.success("✅ Analyzed URL structure and patterns")
# Phase 6: Image SEO Analysis
with st.expander("🖼️ Image SEO Analysis", expanded=True):
image_analysis = self._analyze_image_seo(website_url)
results['image_optimization'] = image_analysis
st.success("✅ Analyzed image optimization")
# Phase 7: Security & Headers Analysis
with st.expander("🛡️ Security Headers Analysis", expanded=True):
security_analysis = self._analyze_security_headers(website_url)
results['security_headers'] = security_analysis
st.success("✅ Analyzed security headers")
# Phase 8: Mobile SEO Analysis
with st.expander("📱 Mobile SEO Analysis", expanded=True):
mobile_analysis = self._analyze_mobile_seo(crawl_data)
results['mobile_seo'] = mobile_analysis
st.success("✅ Analyzed mobile SEO factors")
# Phase 9: AI-Powered Recommendations
with st.expander("🤖 AI Technical Recommendations", expanded=True):
ai_recommendations = self._generate_technical_recommendations(results)
results['ai_recommendations'] = ai_recommendations
st.success("✅ Generated AI-powered technical recommendations")
return results
except Exception as e:
error_msg = f"Error in technical SEO analysis: {str(e)}"
logger.error(error_msg, exc_info=True)
st.error(error_msg)
return {'error': error_msg}
def _perform_comprehensive_crawl(self, website_url: str, depth: int, max_pages: int) -> Dict[str, Any]:
"""Perform comprehensive website crawl using adv.crawl."""
try:
st.info("🕷️ Crawling website for comprehensive analysis...")
# Create crawl output file
crawl_file = os.path.join(self.temp_dir, "technical_crawl.jl")
# Configure crawl settings for technical SEO
custom_settings = {
'DEPTH_LIMIT': depth,
'CLOSESPIDER_PAGECOUNT': max_pages,
'DOWNLOAD_DELAY': 0.5, # Be respectful
'CONCURRENT_REQUESTS': 8,
'ROBOTSTXT_OBEY': True,
'USER_AGENT': 'ALwrity-TechnicalSEO-Crawler/1.0',
'COOKIES_ENABLED': False,
'TELNETCONSOLE_ENABLED': False,
'LOG_LEVEL': 'WARNING'
}
# Start crawl
adv.crawl(
url_list=[website_url],
output_file=crawl_file,
follow_links=True,
custom_settings=custom_settings
)
# Read and process crawl results
if os.path.exists(crawl_file):
crawl_df = pd.read_json(crawl_file, lines=True)
# Basic crawl statistics
crawl_overview = {
'pages_crawled': len(crawl_df),
'status_codes': crawl_df['status'].value_counts().to_dict(),
'crawl_file_path': crawl_file,
'crawl_dataframe': crawl_df,
'domains_found': crawl_df['url'].apply(lambda x: urlparse(x).netloc).nunique(),
'avg_response_time': crawl_df.get('download_latency', pd.Series()).mean(),
'total_content_size': crawl_df.get('size', pd.Series()).sum()
}
return crawl_overview
else:
st.error("Crawl file not created")
return {}
except Exception as e:
st.error(f"Error in website crawl: {str(e)}")
return {}
def _analyze_technical_issues(self, crawl_data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze technical SEO issues from crawl data."""
try:
st.info("🔍 Detecting technical SEO issues...")
if 'crawl_dataframe' not in crawl_data:
return {}
df = crawl_data['crawl_dataframe']
technical_issues = {
'http_errors': {},
'redirect_issues': {},
'duplicate_content': {},
'missing_elements': {},
'page_speed_issues': {},
'crawlability_issues': {}
}
# HTTP Status Code Issues
error_codes = df[df['status'] >= 400]['status'].value_counts().to_dict()
technical_issues['http_errors'] = {
'total_errors': len(df[df['status'] >= 400]),
'error_breakdown': error_codes,
'error_pages': df[df['status'] >= 400][['url', 'status']].to_dict('records')[:50]
}
# Redirect Analysis
redirects = df[df['status'].isin([301, 302, 303, 307, 308])]
technical_issues['redirect_issues'] = {
'total_redirects': len(redirects),
'redirect_chains': self._find_redirect_chains(redirects),
'redirect_types': redirects['status'].value_counts().to_dict()
}
# Duplicate Content Detection
if 'title' in df.columns:
duplicate_titles = df['title'].value_counts()
duplicate_titles = duplicate_titles[duplicate_titles > 1]
technical_issues['duplicate_content'] = {
'duplicate_titles': len(duplicate_titles),
'duplicate_title_groups': duplicate_titles.to_dict(),
'pages_with_duplicate_titles': df[df['title'].isin(duplicate_titles.index)][['url', 'title']].to_dict('records')[:20]
}
# Missing Elements Analysis
missing_elements = {
'missing_titles': len(df[(df['title'].isna()) | (df['title'] == '')]) if 'title' in df.columns else 0,
'missing_meta_desc': len(df[(df['meta_desc'].isna()) | (df['meta_desc'] == '')]) if 'meta_desc' in df.columns else 0,
'missing_h1': len(df[(df['h1'].isna()) | (df['h1'] == '')]) if 'h1' in df.columns else 0
}
technical_issues['missing_elements'] = missing_elements
# Page Speed Issues
if 'download_latency' in df.columns:
slow_pages = df[df['download_latency'] > 3.0] # Pages taking >3s
technical_issues['page_speed_issues'] = {
'slow_pages_count': len(slow_pages),
'avg_load_time': df['download_latency'].mean(),
'slowest_pages': slow_pages.nlargest(10, 'download_latency')[['url', 'download_latency']].to_dict('records')
}
return technical_issues
except Exception as e:
st.error(f"Error analyzing technical issues: {str(e)}")
return {}
def _analyze_performance_metrics(self, crawl_data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze website performance metrics."""
try:
st.info("⚡ Analyzing performance metrics...")
if 'crawl_dataframe' not in crawl_data:
return {}
df = crawl_data['crawl_dataframe']
performance = {
'load_time_analysis': {},
'content_size_analysis': {},
'server_performance': {},
'optimization_opportunities': []
}
# Load Time Analysis
if 'download_latency' in df.columns:
load_times = df['download_latency'].dropna()
performance['load_time_analysis'] = {
'avg_load_time': load_times.mean(),
'median_load_time': load_times.median(),
'p95_load_time': load_times.quantile(0.95),
'fastest_page': load_times.min(),
'slowest_page': load_times.max(),
'pages_over_3s': len(load_times[load_times > 3]),
'performance_distribution': {
'fast_pages': len(load_times[load_times <= 1]),
'moderate_pages': len(load_times[(load_times > 1) & (load_times <= 3)]),
'slow_pages': len(load_times[load_times > 3])
}
}
# Content Size Analysis
if 'size' in df.columns:
sizes = df['size'].dropna()
performance['content_size_analysis'] = {
'avg_page_size': sizes.mean(),
'median_page_size': sizes.median(),
'largest_page': sizes.max(),
'smallest_page': sizes.min(),
'pages_over_1mb': len(sizes[sizes > 1048576]), # 1MB
'total_content_size': sizes.sum()
}
# Server Performance
status_codes = df['status'].value_counts()
total_pages = len(df)
performance['server_performance'] = {
'success_rate': status_codes.get(200, 0) / total_pages * 100,
'error_rate': sum(status_codes.get(code, 0) for code in range(400, 600)) / total_pages * 100,
'redirect_rate': sum(status_codes.get(code, 0) for code in [301, 302, 303, 307, 308]) / total_pages * 100
}
return performance
except Exception as e:
st.error(f"Error analyzing performance: {str(e)}")
return {}
def _analyze_content_structure(self, crawl_data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze content structure and SEO elements."""
try:
st.info("📊 Analyzing content structure...")
if 'crawl_dataframe' not in crawl_data:
return {}
df = crawl_data['crawl_dataframe']
content_analysis = {
'title_analysis': {},
'meta_description_analysis': {},
'heading_structure': {},
'internal_linking': {},
'content_optimization': {}
}
# Title Analysis
if 'title' in df.columns:
titles = df['title'].dropna()
title_lengths = titles.str.len()
content_analysis['title_analysis'] = {
'avg_title_length': title_lengths.mean(),
'title_length_distribution': {
'too_short': len(title_lengths[title_lengths < 30]),
'optimal': len(title_lengths[(title_lengths >= 30) & (title_lengths <= 60)]),
'too_long': len(title_lengths[title_lengths > 60])
},
'duplicate_titles': len(titles.value_counts()[titles.value_counts() > 1]),
'missing_titles': len(df) - len(titles)
}
# Meta Description Analysis
if 'meta_desc' in df.columns:
meta_descs = df['meta_desc'].dropna()
meta_lengths = meta_descs.str.len()
content_analysis['meta_description_analysis'] = {
'avg_meta_length': meta_lengths.mean(),
'meta_length_distribution': {
'too_short': len(meta_lengths[meta_lengths < 120]),
'optimal': len(meta_lengths[(meta_lengths >= 120) & (meta_lengths <= 160)]),
'too_long': len(meta_lengths[meta_lengths > 160])
},
'missing_meta_descriptions': len(df) - len(meta_descs)
}
# Heading Structure Analysis
heading_cols = [col for col in df.columns if col.startswith('h') and col[1:].isdigit()]
if heading_cols:
heading_analysis = {}
for col in heading_cols:
headings = df[col].dropna()
heading_analysis[f'{col}_usage'] = {
'pages_with_heading': len(headings),
'usage_rate': len(headings) / len(df) * 100,
'avg_length': headings.str.len().mean() if len(headings) > 0 else 0
}
content_analysis['heading_structure'] = heading_analysis
# Internal Linking Analysis
if 'links_internal' in df.columns:
internal_links = df['links_internal'].apply(lambda x: len(x) if isinstance(x, list) else 0)
content_analysis['internal_linking'] = {
'avg_internal_links': internal_links.mean(),
'pages_with_no_internal_links': len(internal_links[internal_links == 0]),
'max_internal_links': internal_links.max(),
'internal_link_distribution': internal_links.describe().to_dict()
}
return content_analysis
except Exception as e:
st.error(f"Error analyzing content structure: {str(e)}")
return {}
def _analyze_url_structure(self, crawl_data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze URL structure and optimization using adv.url_to_df."""
try:
st.info("🔗 Analyzing URL structure...")
if 'crawl_dataframe' not in crawl_data:
return {}
df = crawl_data['crawl_dataframe']
urls = df['url'].tolist()
# Use advertools to analyze URL structure
url_df = adv.url_to_df(urls)
url_analysis = {
'url_length_analysis': {},
'url_structure_patterns': {},
'url_optimization': {},
'path_analysis': {}
}
# URL Length Analysis
url_lengths = url_df['url'].str.len()
url_analysis['url_length_analysis'] = {
'avg_url_length': url_lengths.mean(),
'max_url_length': url_lengths.max(),
'long_urls_count': len(url_lengths[url_lengths > 100]),
'url_length_distribution': url_lengths.describe().to_dict()
}
# Path Depth Analysis
if 'dir_1' in url_df.columns:
path_depths = url_df.apply(lambda row: sum(1 for i in range(1, 10) if f'dir_{i}' in row and pd.notna(row[f'dir_{i}'])), axis=1)
url_analysis['path_analysis'] = {
'avg_path_depth': path_depths.mean(),
'max_path_depth': path_depths.max(),
'deep_paths_count': len(path_depths[path_depths > 4]),
'path_depth_distribution': path_depths.value_counts().to_dict()
}
# URL Structure Patterns
domains = url_df['netloc'].value_counts()
schemes = url_df['scheme'].value_counts()
url_analysis['url_structure_patterns'] = {
'domains_found': domains.to_dict(),
'schemes_used': schemes.to_dict(),
'subdomain_usage': len(url_df[url_df['netloc'].str.contains('\.', regex=True)]),
'https_usage': schemes.get('https', 0) / len(url_df) * 100
}
# URL Optimization Issues
optimization_issues = []
# Check for non-HTTPS URLs
if schemes.get('http', 0) > 0:
optimization_issues.append(f"{schemes.get('http', 0)} pages not using HTTPS")
# Check for long URLs
long_urls = len(url_lengths[url_lengths > 100])
if long_urls > 0:
optimization_issues.append(f"{long_urls} URLs are too long (>100 characters)")
# Check for deep paths
if 'path_analysis' in url_analysis:
deep_paths = url_analysis['path_analysis']['deep_paths_count']
if deep_paths > 0:
optimization_issues.append(f"{deep_paths} URLs have deep path structures (>4 levels)")
url_analysis['url_optimization'] = {
'issues_found': len(optimization_issues),
'optimization_recommendations': optimization_issues
}
return url_analysis
except Exception as e:
st.error(f"Error analyzing URL structure: {str(e)}")
return {}
def _analyze_image_seo(self, website_url: str) -> Dict[str, Any]:
"""Analyze image SEO using adv.crawl_images."""
try:
st.info("🖼️ Analyzing image SEO...")
# Create image crawl output file
image_file = os.path.join(self.temp_dir, "image_crawl.jl")
# Crawl images
adv.crawl_images(
url_list=[website_url],
output_file=image_file,
custom_settings={
'DEPTH_LIMIT': 2,
'CLOSESPIDER_PAGECOUNT': 100,
'DOWNLOAD_DELAY': 1
}
)
image_analysis = {
'image_count': 0,
'alt_text_analysis': {},
'image_format_analysis': {},
'image_size_analysis': {},
'optimization_opportunities': []
}
if os.path.exists(image_file):
image_df = pd.read_json(image_file, lines=True)
image_analysis['image_count'] = len(image_df)
# Alt text analysis
if 'img_alt' in image_df.columns:
alt_texts = image_df['img_alt'].dropna()
missing_alt = len(image_df) - len(alt_texts)
image_analysis['alt_text_analysis'] = {
'images_with_alt': len(alt_texts),
'images_missing_alt': missing_alt,
'alt_text_coverage': len(alt_texts) / len(image_df) * 100,
'avg_alt_length': alt_texts.str.len().mean() if len(alt_texts) > 0 else 0
}
# Image format analysis
if 'img_src' in image_df.columns:
# Extract file extensions
extensions = image_df['img_src'].str.extract(r'\.([a-zA-Z]{2,4})(?:\?|$)')
format_counts = extensions[0].value_counts()
image_analysis['image_format_analysis'] = {
'format_distribution': format_counts.to_dict(),
'modern_format_usage': format_counts.get('webp', 0) + format_counts.get('avif', 0)
}
return image_analysis
except Exception as e:
st.error(f"Error analyzing images: {str(e)}")
return {}
def _analyze_security_headers(self, website_url: str) -> Dict[str, Any]:
"""Analyze security headers using adv.crawl_headers."""
try:
st.info("🛡️ Analyzing security headers...")
# Create headers output file
headers_file = os.path.join(self.temp_dir, "security_headers.jl")
# Crawl headers
adv.crawl_headers([website_url], output_file=headers_file)
security_analysis = {
'security_headers_present': {},
'security_score': 0,
'security_recommendations': []
}
if os.path.exists(headers_file):
headers_df = pd.read_json(headers_file, lines=True)
# Check for important security headers
security_headers = {
'X-Frame-Options': 'resp_headers_X-Frame-Options',
'X-Content-Type-Options': 'resp_headers_X-Content-Type-Options',
'X-XSS-Protection': 'resp_headers_X-XSS-Protection',
'Strict-Transport-Security': 'resp_headers_Strict-Transport-Security',
'Content-Security-Policy': 'resp_headers_Content-Security-Policy',
'Referrer-Policy': 'resp_headers_Referrer-Policy'
}
headers_present = {}
for header_name, column_name in security_headers.items():
is_present = column_name in headers_df.columns and headers_df[column_name].notna().any()
headers_present[header_name] = is_present
security_analysis['security_headers_present'] = headers_present
# Calculate security score
present_count = sum(headers_present.values())
security_analysis['security_score'] = (present_count / len(security_headers)) * 100
# Generate recommendations
recommendations = []
for header_name, is_present in headers_present.items():
if not is_present:
recommendations.append(f"Add {header_name} header for improved security")
security_analysis['security_recommendations'] = recommendations
return security_analysis
except Exception as e:
st.error(f"Error analyzing security headers: {str(e)}")
return {}
def _analyze_mobile_seo(self, crawl_data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze mobile SEO factors."""
try:
st.info("📱 Analyzing mobile SEO factors...")
if 'crawl_dataframe' not in crawl_data:
return {}
df = crawl_data['crawl_dataframe']
mobile_analysis = {
'viewport_analysis': {},
'mobile_optimization': {},
'responsive_design_indicators': {}
}
# Viewport meta tag analysis
if 'viewport' in df.columns:
viewport_present = df['viewport'].notna().sum()
mobile_analysis['viewport_analysis'] = {
'pages_with_viewport': viewport_present,
'viewport_coverage': viewport_present / len(df) * 100,
'pages_missing_viewport': len(df) - viewport_present
}
# Check for mobile-specific meta tags and indicators
mobile_indicators = []
# Check for touch icons
if any('touch-icon' in col for col in df.columns):
mobile_indicators.append("Touch icons configured")
# Check for responsive design indicators in content
# This is a simplified check - in practice, you'd analyze CSS and page structure
mobile_analysis['mobile_optimization'] = {
'mobile_indicators_found': len(mobile_indicators),
'mobile_indicators': mobile_indicators
}
return mobile_analysis
except Exception as e:
st.error(f"Error analyzing mobile SEO: {str(e)}")
return {}
def _generate_technical_recommendations(self, results: Dict[str, Any]) -> Dict[str, Any]:
"""Generate AI-powered technical SEO recommendations."""
try:
st.info("🤖 Generating technical recommendations...")
# Prepare technical analysis summary for AI
technical_summary = {
'website_url': results.get('website_url', ''),
'pages_crawled': results.get('crawl_overview', {}).get('pages_crawled', 0),
'error_count': results.get('technical_issues', {}).get('http_errors', {}).get('total_errors', 0),
'avg_load_time': results.get('performance_analysis', {}).get('load_time_analysis', {}).get('avg_load_time', 0),
'security_score': results.get('security_headers', {}).get('security_score', 0),
'missing_titles': results.get('content_analysis', {}).get('title_analysis', {}).get('missing_titles', 0),
'missing_meta_desc': results.get('content_analysis', {}).get('meta_description_analysis', {}).get('missing_meta_descriptions', 0)
}
# Generate AI recommendations
prompt = f"""
As a technical SEO expert, analyze this comprehensive website audit and provide prioritized recommendations:
WEBSITE: {technical_summary['website_url']}
PAGES ANALYZED: {technical_summary['pages_crawled']}
TECHNICAL ISSUES:
- HTTP Errors: {technical_summary['error_count']}
- Average Load Time: {technical_summary['avg_load_time']:.2f}s
- Security Score: {technical_summary['security_score']:.1f}%
- Missing Titles: {technical_summary['missing_titles']}
- Missing Meta Descriptions: {technical_summary['missing_meta_desc']}
PROVIDE:
1. Critical Issues (Fix Immediately)
2. High Priority Optimizations
3. Medium Priority Improvements
4. Long-term Technical Strategy
5. Specific Implementation Steps
6. Expected Impact Assessment
Format as JSON with clear priorities and actionable recommendations.
"""
ai_response = llm_text_gen(
prompt=prompt,
system_prompt="You are a senior technical SEO specialist with expertise in website optimization, Core Web Vitals, and search engine best practices.",
response_format="json_object"
)
if ai_response:
return ai_response
else:
return {'recommendations': ['AI recommendations temporarily unavailable']}
except Exception as e:
st.error(f"Error generating recommendations: {str(e)}")
return {}
def _find_redirect_chains(self, redirects_df: pd.DataFrame) -> List[Dict[str, Any]]:
"""Find redirect chains in the crawled data."""
# Simplified redirect chain detection
# In a full implementation, you'd trace the redirect paths
redirect_chains = []
if len(redirects_df) > 0:
# Group redirects by status code
for status_code in redirects_df['status'].unique():
status_redirects = redirects_df[redirects_df['status'] == status_code]
redirect_chains.append({
'status_code': int(status_code),
'count': len(status_redirects),
'examples': status_redirects['url'].head(5).tolist()
})
return redirect_chains

View File

@@ -0,0 +1,968 @@
"""
Technical SEO Crawler UI with Comprehensive Analysis Dashboard.
This module provides a professional Streamlit interface for the Technical SEO Crawler
with detailed analysis results, visualization, and export capabilities.
"""
import streamlit as st
import pandas as pd
from typing import Dict, Any, List
import json
from datetime import datetime
import io
import base64
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from .crawler import TechnicalSEOCrawler
from lib.alwrity_ui.dashboard_styles import apply_dashboard_style, render_dashboard_header
class TechnicalSEOCrawlerUI:
"""Professional UI for Technical SEO Crawler."""
def __init__(self):
"""Initialize the Technical SEO Crawler UI."""
self.crawler = TechnicalSEOCrawler()
# Apply dashboard styling
apply_dashboard_style()
def render(self):
"""Render the Technical SEO Crawler interface."""
# Enhanced dashboard header
render_dashboard_header(
"🔧 Technical SEO Crawler",
"Comprehensive site-wide technical SEO analysis with AI-powered recommendations. Identify and fix technical issues that impact your search rankings."
)
# Main content area
with st.container():
# Analysis input form
self._render_crawler_form()
# Session state for results
if 'technical_seo_results' in st.session_state and st.session_state.technical_seo_results:
st.markdown("---")
self._render_results_dashboard(st.session_state.technical_seo_results)
def _render_crawler_form(self):
"""Render the crawler configuration form."""
st.markdown("## 🚀 Configure Technical SEO Audit")
with st.form("technical_seo_crawler_form"):
# Website URL input
col1, col2 = st.columns([3, 1])
with col1:
website_url = st.text_input(
"🌐 Website URL to Audit",
placeholder="https://yourwebsite.com",
help="Enter the website URL for comprehensive technical SEO analysis"
)
with col2:
audit_type = st.selectbox(
"🎯 Audit Type",
options=["Standard", "Deep", "Quick"],
help="Choose the depth of analysis"
)
# Crawl configuration
st.markdown("### ⚙️ Crawl Configuration")
col1, col2, col3 = st.columns(3)
with col1:
if audit_type == "Quick":
crawl_depth = st.slider("Crawl Depth", 1, 2, 1)
max_pages = st.slider("Max Pages", 10, 100, 50)
elif audit_type == "Deep":
crawl_depth = st.slider("Crawl Depth", 1, 5, 4)
max_pages = st.slider("Max Pages", 100, 1000, 500)
else: # Standard
crawl_depth = st.slider("Crawl Depth", 1, 4, 3)
max_pages = st.slider("Max Pages", 50, 500, 200)
with col2:
analyze_images = st.checkbox(
"🖼️ Analyze Images",
value=True,
help="Include image SEO analysis"
)
analyze_security = st.checkbox(
"🛡️ Security Headers",
value=True,
help="Analyze security headers"
)
with col3:
analyze_mobile = st.checkbox(
"📱 Mobile SEO",
value=True,
help="Include mobile SEO analysis"
)
ai_recommendations = st.checkbox(
"🤖 AI Recommendations",
value=True,
help="Generate AI-powered recommendations"
)
# Analysis scope
st.markdown("### 🎯 Analysis Scope")
analysis_options = st.multiselect(
"Select Analysis Components",
options=[
"Technical Issues Detection",
"Performance Analysis",
"Content Structure Analysis",
"URL Structure Optimization",
"Internal Linking Analysis",
"Duplicate Content Detection"
],
default=[
"Technical Issues Detection",
"Performance Analysis",
"Content Structure Analysis"
],
help="Choose which analysis components to include"
)
# Submit button
submitted = st.form_submit_button(
"🚀 Start Technical SEO Audit",
use_container_width=True,
type="primary"
)
if submitted:
# Validate inputs
if not website_url or not website_url.startswith(('http://', 'https://')):
st.error("❌ Please enter a valid website URL starting with http:// or https://")
return
# Run technical SEO analysis
self._run_technical_analysis(
website_url=website_url,
crawl_depth=crawl_depth,
max_pages=max_pages,
options={
'analyze_images': analyze_images,
'analyze_security': analyze_security,
'analyze_mobile': analyze_mobile,
'ai_recommendations': ai_recommendations,
'analysis_scope': analysis_options
}
)
def _run_technical_analysis(self, website_url: str, crawl_depth: int,
max_pages: int, options: Dict[str, Any]):
"""Run the technical SEO analysis."""
try:
with st.spinner("🔄 Running Comprehensive Technical SEO Audit..."):
# Initialize progress tracking
progress_bar = st.progress(0)
status_text = st.empty()
# Update progress
progress_bar.progress(10)
status_text.text("🚀 Initializing technical SEO crawler...")
# Run comprehensive analysis
results = self.crawler.analyze_website_technical_seo(
website_url=website_url,
crawl_depth=crawl_depth,
max_pages=max_pages
)
progress_bar.progress(100)
status_text.text("✅ Technical SEO audit complete!")
# Store results in session state
st.session_state.technical_seo_results = results
# Clear progress indicators
progress_bar.empty()
status_text.empty()
if 'error' in results:
st.error(f"❌ Analysis failed: {results['error']}")
else:
st.success("🎉 Technical SEO Audit completed successfully!")
st.balloons()
# Rerun to show results
st.rerun()
except Exception as e:
st.error(f"❌ Error running technical analysis: {str(e)}")
def _render_results_dashboard(self, results: Dict[str, Any]):
"""Render the comprehensive results dashboard."""
if 'error' in results:
st.error(f"❌ Analysis Error: {results['error']}")
return
# Results header
st.markdown("## 📊 Technical SEO Audit Results")
# Key metrics overview
self._render_metrics_overview(results)
# Detailed analysis tabs
self._render_detailed_analysis(results)
# Export functionality
self._render_export_options(results)
def _render_metrics_overview(self, results: Dict[str, Any]):
"""Render key metrics overview."""
st.markdown("### 📈 Audit Overview")
# Create metrics columns
col1, col2, col3, col4, col5, col6 = st.columns(6)
with col1:
pages_crawled = results.get('crawl_overview', {}).get('pages_crawled', 0)
st.metric(
"🕷️ Pages Crawled",
pages_crawled,
help="Total pages analyzed"
)
with col2:
error_count = results.get('technical_issues', {}).get('http_errors', {}).get('total_errors', 0)
st.metric(
"❌ HTTP Errors",
error_count,
delta=f"-{error_count}" if error_count > 0 else None,
help="Pages with HTTP errors (4xx, 5xx)"
)
with col3:
avg_load_time = results.get('performance_analysis', {}).get('load_time_analysis', {}).get('avg_load_time', 0)
st.metric(
"⚡ Avg Load Time",
f"{avg_load_time:.2f}s",
delta=f"+{avg_load_time:.2f}s" if avg_load_time > 3 else None,
help="Average page load time"
)
with col4:
security_score = results.get('security_headers', {}).get('security_score', 0)
st.metric(
"🛡️ Security Score",
f"{security_score:.0f}%",
delta=f"{security_score:.0f}%" if security_score < 100 else None,
help="Security headers implementation score"
)
with col5:
missing_titles = results.get('content_analysis', {}).get('title_analysis', {}).get('missing_titles', 0)
st.metric(
"📝 Missing Titles",
missing_titles,
delta=f"-{missing_titles}" if missing_titles > 0 else None,
help="Pages without title tags"
)
with col6:
image_count = results.get('image_optimization', {}).get('image_count', 0)
st.metric(
"🖼️ Images Analyzed",
image_count,
help="Total images found and analyzed"
)
# Analysis timestamp
if results.get('analysis_timestamp'):
timestamp = datetime.fromisoformat(results['analysis_timestamp'].replace('Z', '+00:00'))
st.caption(f"📅 Audit completed: {timestamp.strftime('%Y-%m-%d %H:%M:%S UTC')}")
def _render_detailed_analysis(self, results: Dict[str, Any]):
"""Render detailed analysis in tabs."""
# Create main analysis tabs
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs([
"🔍 Technical Issues",
"⚡ Performance",
"📊 Content Analysis",
"🔗 URL Structure",
"🖼️ Image SEO",
"🛡️ Security",
"🤖 AI Recommendations"
])
with tab1:
self._render_technical_issues(results.get('technical_issues', {}))
with tab2:
self._render_performance_analysis(results.get('performance_analysis', {}))
with tab3:
self._render_content_analysis(results.get('content_analysis', {}))
with tab4:
self._render_url_structure(results.get('url_structure', {}))
with tab5:
self._render_image_analysis(results.get('image_optimization', {}))
with tab6:
self._render_security_analysis(results.get('security_headers', {}))
with tab7:
self._render_ai_recommendations(results.get('ai_recommendations', {}))
def _render_technical_issues(self, technical_data: Dict[str, Any]):
"""Render technical issues analysis."""
st.markdown("### 🔍 Technical SEO Issues")
if not technical_data:
st.info("No technical issues data available")
return
# HTTP Errors
if technical_data.get('http_errors'):
http_errors = technical_data['http_errors']
st.markdown("#### ❌ HTTP Status Code Errors")
if http_errors.get('total_errors', 0) > 0:
st.error(f"Found {http_errors['total_errors']} pages with HTTP errors!")
# Error breakdown chart
if http_errors.get('error_breakdown'):
error_df = pd.DataFrame(
list(http_errors['error_breakdown'].items()),
columns=['Status Code', 'Count']
)
fig = px.bar(error_df, x='Status Code', y='Count',
title="HTTP Error Distribution")
st.plotly_chart(fig, use_container_width=True)
# Error pages table
if http_errors.get('error_pages'):
st.markdown("**Pages with Errors:**")
error_pages_df = pd.DataFrame(http_errors['error_pages'])
st.dataframe(error_pages_df, use_container_width=True)
else:
st.success("✅ No HTTP errors found!")
# Redirect Issues
if technical_data.get('redirect_issues'):
redirect_data = technical_data['redirect_issues']
st.markdown("#### 🔄 Redirect Analysis")
total_redirects = redirect_data.get('total_redirects', 0)
if total_redirects > 0:
st.warning(f"Found {total_redirects} redirect(s)")
# Redirect types
if redirect_data.get('redirect_types'):
redirect_df = pd.DataFrame(
list(redirect_data['redirect_types'].items()),
columns=['Redirect Type', 'Count']
)
st.bar_chart(redirect_df.set_index('Redirect Type'))
else:
st.success("✅ No redirects found")
# Duplicate Content
if technical_data.get('duplicate_content'):
duplicate_data = technical_data['duplicate_content']
st.markdown("#### 📋 Duplicate Content Issues")
duplicate_titles = duplicate_data.get('duplicate_titles', 0)
if duplicate_titles > 0:
st.warning(f"Found {duplicate_titles} duplicate title(s)")
# Show duplicate title groups
if duplicate_data.get('pages_with_duplicate_titles'):
duplicate_df = pd.DataFrame(duplicate_data['pages_with_duplicate_titles'])
st.dataframe(duplicate_df, use_container_width=True)
else:
st.success("✅ No duplicate titles found")
# Missing Elements
if technical_data.get('missing_elements'):
missing_data = technical_data['missing_elements']
st.markdown("#### 📝 Missing SEO Elements")
col1, col2, col3 = st.columns(3)
with col1:
missing_titles = missing_data.get('missing_titles', 0)
if missing_titles > 0:
st.error(f"Missing Titles: {missing_titles}")
else:
st.success("All pages have titles ✅")
with col2:
missing_meta = missing_data.get('missing_meta_desc', 0)
if missing_meta > 0:
st.error(f"Missing Meta Descriptions: {missing_meta}")
else:
st.success("All pages have meta descriptions ✅")
with col3:
missing_h1 = missing_data.get('missing_h1', 0)
if missing_h1 > 0:
st.error(f"Missing H1 tags: {missing_h1}")
else:
st.success("All pages have H1 tags ✅")
def _render_performance_analysis(self, performance_data: Dict[str, Any]):
"""Render performance analysis."""
st.markdown("### ⚡ Website Performance Analysis")
if not performance_data:
st.info("No performance data available")
return
# Load Time Analysis
if performance_data.get('load_time_analysis'):
load_time_data = performance_data['load_time_analysis']
st.markdown("#### 🚀 Page Load Time Analysis")
col1, col2, col3 = st.columns(3)
with col1:
avg_load = load_time_data.get('avg_load_time', 0)
st.metric("Average Load Time", f"{avg_load:.2f}s")
with col2:
median_load = load_time_data.get('median_load_time', 0)
st.metric("Median Load Time", f"{median_load:.2f}s")
with col3:
p95_load = load_time_data.get('p95_load_time', 0)
st.metric("95th Percentile", f"{p95_load:.2f}s")
# Performance distribution
if load_time_data.get('performance_distribution'):
perf_dist = load_time_data['performance_distribution']
# Create pie chart for performance distribution
labels = ['Fast (≤1s)', 'Moderate (1-3s)', 'Slow (>3s)']
values = [
perf_dist.get('fast_pages', 0),
perf_dist.get('moderate_pages', 0),
perf_dist.get('slow_pages', 0)
]
fig = px.pie(values=values, names=labels,
title="Page Load Time Distribution")
st.plotly_chart(fig, use_container_width=True)
# Content Size Analysis
if performance_data.get('content_size_analysis'):
size_data = performance_data['content_size_analysis']
st.markdown("#### 📦 Content Size Analysis")
col1, col2, col3 = st.columns(3)
with col1:
avg_size = size_data.get('avg_page_size', 0)
st.metric("Average Page Size", f"{avg_size/1024:.1f} KB")
with col2:
largest_size = size_data.get('largest_page', 0)
st.metric("Largest Page", f"{largest_size/1024:.1f} KB")
with col3:
large_pages = size_data.get('pages_over_1mb', 0)
st.metric("Pages >1MB", large_pages)
# Server Performance
if performance_data.get('server_performance'):
server_data = performance_data['server_performance']
st.markdown("#### 🖥️ Server Performance")
col1, col2, col3 = st.columns(3)
with col1:
success_rate = server_data.get('success_rate', 0)
st.metric("Success Rate", f"{success_rate:.1f}%")
with col2:
error_rate = server_data.get('error_rate', 0)
st.metric("Error Rate", f"{error_rate:.1f}%")
with col3:
redirect_rate = server_data.get('redirect_rate', 0)
st.metric("Redirect Rate", f"{redirect_rate:.1f}%")
def _render_content_analysis(self, content_data: Dict[str, Any]):
"""Render content structure analysis."""
st.markdown("### 📊 Content Structure Analysis")
if not content_data:
st.info("No content analysis data available")
return
# Title Analysis
if content_data.get('title_analysis'):
title_data = content_data['title_analysis']
st.markdown("#### 📝 Title Tag Analysis")
col1, col2 = st.columns(2)
with col1:
avg_title_length = title_data.get('avg_title_length', 0)
st.metric("Average Title Length", f"{avg_title_length:.0f} chars")
duplicate_titles = title_data.get('duplicate_titles', 0)
st.metric("Duplicate Titles", duplicate_titles)
with col2:
# Title length distribution
if title_data.get('title_length_distribution'):
length_dist = title_data['title_length_distribution']
labels = ['Too Short (<30)', 'Optimal (30-60)', 'Too Long (>60)']
values = [
length_dist.get('too_short', 0),
length_dist.get('optimal', 0),
length_dist.get('too_long', 0)
]
fig = px.pie(values=values, names=labels,
title="Title Length Distribution")
st.plotly_chart(fig, use_container_width=True)
# Meta Description Analysis
if content_data.get('meta_description_analysis'):
meta_data = content_data['meta_description_analysis']
st.markdown("#### 🏷️ Meta Description Analysis")
col1, col2 = st.columns(2)
with col1:
avg_meta_length = meta_data.get('avg_meta_length', 0)
st.metric("Average Meta Length", f"{avg_meta_length:.0f} chars")
missing_meta = meta_data.get('missing_meta_descriptions', 0)
st.metric("Missing Meta Descriptions", missing_meta)
with col2:
# Meta length distribution
if meta_data.get('meta_length_distribution'):
meta_dist = meta_data['meta_length_distribution']
labels = ['Too Short (<120)', 'Optimal (120-160)', 'Too Long (>160)']
values = [
meta_dist.get('too_short', 0),
meta_dist.get('optimal', 0),
meta_dist.get('too_long', 0)
]
fig = px.pie(values=values, names=labels,
title="Meta Description Length Distribution")
st.plotly_chart(fig, use_container_width=True)
# Heading Structure
if content_data.get('heading_structure'):
heading_data = content_data['heading_structure']
st.markdown("#### 📋 Heading Structure Analysis")
# Create heading usage chart
heading_usage = []
for heading_type, data in heading_data.items():
heading_usage.append({
'Heading': heading_type.replace('_usage', '').upper(),
'Usage Rate': data.get('usage_rate', 0),
'Pages': data.get('pages_with_heading', 0)
})
if heading_usage:
heading_df = pd.DataFrame(heading_usage)
fig = px.bar(heading_df, x='Heading', y='Usage Rate',
title="Heading Tag Usage Rates")
st.plotly_chart(fig, use_container_width=True)
st.dataframe(heading_df, use_container_width=True)
def _render_url_structure(self, url_data: Dict[str, Any]):
"""Render URL structure analysis."""
st.markdown("### 🔗 URL Structure Analysis")
if not url_data:
st.info("No URL structure data available")
return
# URL Length Analysis
if url_data.get('url_length_analysis'):
length_data = url_data['url_length_analysis']
st.markdown("#### 📏 URL Length Analysis")
col1, col2, col3 = st.columns(3)
with col1:
avg_length = length_data.get('avg_url_length', 0)
st.metric("Average URL Length", f"{avg_length:.0f} chars")
with col2:
max_length = length_data.get('max_url_length', 0)
st.metric("Longest URL", f"{max_length:.0f} chars")
with col3:
long_urls = length_data.get('long_urls_count', 0)
st.metric("URLs >100 chars", long_urls)
# URL Structure Patterns
if url_data.get('url_structure_patterns'):
pattern_data = url_data['url_structure_patterns']
st.markdown("#### 🏗️ URL Structure Patterns")
col1, col2 = st.columns(2)
with col1:
https_usage = pattern_data.get('https_usage', 0)
st.metric("HTTPS Usage", f"{https_usage:.1f}%")
with col2:
subdomain_usage = pattern_data.get('subdomain_usage', 0)
st.metric("Subdomains Found", subdomain_usage)
# Path Analysis
if url_data.get('path_analysis'):
path_data = url_data['path_analysis']
st.markdown("#### 📂 Path Depth Analysis")
col1, col2, col3 = st.columns(3)
with col1:
avg_depth = path_data.get('avg_path_depth', 0)
st.metric("Average Path Depth", f"{avg_depth:.1f}")
with col2:
max_depth = path_data.get('max_path_depth', 0)
st.metric("Maximum Depth", max_depth)
with col3:
deep_paths = path_data.get('deep_paths_count', 0)
st.metric("Deep Paths (>4)", deep_paths)
# Optimization Issues
if url_data.get('url_optimization'):
opt_data = url_data['url_optimization']
st.markdown("#### ⚠️ URL Optimization Issues")
issues_found = opt_data.get('issues_found', 0)
recommendations = opt_data.get('optimization_recommendations', [])
if issues_found > 0:
st.warning(f"Found {issues_found} URL optimization issue(s)")
for rec in recommendations:
st.write(f"{rec}")
else:
st.success("✅ No URL optimization issues found")
def _render_image_analysis(self, image_data: Dict[str, Any]):
"""Render image SEO analysis."""
st.markdown("### 🖼️ Image SEO Analysis")
if not image_data:
st.info("No image analysis data available")
return
# Image overview
image_count = image_data.get('image_count', 0)
st.metric("Total Images Found", image_count)
if image_count > 0:
# Alt text analysis
if image_data.get('alt_text_analysis'):
alt_data = image_data['alt_text_analysis']
st.markdown("#### 📝 Alt Text Analysis")
col1, col2, col3 = st.columns(3)
with col1:
images_with_alt = alt_data.get('images_with_alt', 0)
st.metric("Images with Alt Text", images_with_alt)
with col2:
images_missing_alt = alt_data.get('images_missing_alt', 0)
st.metric("Missing Alt Text", images_missing_alt)
with col3:
alt_coverage = alt_data.get('alt_text_coverage', 0)
st.metric("Alt Text Coverage", f"{alt_coverage:.1f}%")
# Image format analysis
if image_data.get('image_format_analysis'):
format_data = image_data['image_format_analysis']
st.markdown("#### 🎨 Image Format Analysis")
if format_data.get('format_distribution'):
format_dist = format_data['format_distribution']
format_df = pd.DataFrame(
list(format_dist.items()),
columns=['Format', 'Count']
)
fig = px.pie(format_df, values='Count', names='Format',
title="Image Format Distribution")
st.plotly_chart(fig, use_container_width=True)
modern_formats = format_data.get('modern_format_usage', 0)
st.metric("Modern Formats (WebP/AVIF)", modern_formats)
else:
st.info("No images found to analyze")
def _render_security_analysis(self, security_data: Dict[str, Any]):
"""Render security analysis."""
st.markdown("### 🛡️ Security Headers Analysis")
if not security_data:
st.info("No security analysis data available")
return
# Security score
security_score = security_data.get('security_score', 0)
col1, col2 = st.columns([1, 2])
with col1:
st.metric("Security Score", f"{security_score:.0f}%")
if security_score >= 80:
st.success("🔒 Good security posture")
elif security_score >= 50:
st.warning("⚠️ Moderate security")
else:
st.error("🚨 Poor security posture")
with col2:
# Security headers status
if security_data.get('security_headers_present'):
headers_status = security_data['security_headers_present']
st.markdown("**Security Headers Status:**")
for header, present in headers_status.items():
status = "" if present else ""
st.write(f"{status} {header}")
# Security recommendations
if security_data.get('security_recommendations'):
recommendations = security_data['security_recommendations']
if recommendations:
st.markdown("#### 🔧 Security Recommendations")
for rec in recommendations:
st.write(f"{rec}")
else:
st.success("✅ All security headers properly configured")
def _render_ai_recommendations(self, ai_data: Dict[str, Any]):
"""Render AI-generated recommendations."""
st.markdown("### 🤖 AI-Powered Technical Recommendations")
if not ai_data:
st.info("No AI recommendations available")
return
# Critical Issues
if ai_data.get('critical_issues'):
st.markdown("#### 🚨 Critical Issues (Fix Immediately)")
critical_issues = ai_data['critical_issues']
for issue in critical_issues:
st.error(f"🚨 {issue}")
# High Priority
if ai_data.get('high_priority'):
st.markdown("#### 🔥 High Priority Optimizations")
high_priority = ai_data['high_priority']
for item in high_priority:
st.warning(f"{item}")
# Medium Priority
if ai_data.get('medium_priority'):
st.markdown("#### 📈 Medium Priority Improvements")
medium_priority = ai_data['medium_priority']
for item in medium_priority:
st.info(f"📊 {item}")
# Implementation Steps
if ai_data.get('implementation_steps'):
st.markdown("#### 🛠️ Implementation Steps")
steps = ai_data['implementation_steps']
for i, step in enumerate(steps, 1):
st.write(f"{i}. {step}")
# Expected Impact
if ai_data.get('expected_impact'):
st.markdown("#### 📈 Expected Impact Assessment")
impact = ai_data['expected_impact']
st.markdown(impact)
def _render_export_options(self, results: Dict[str, Any]):
"""Render export options for analysis results."""
st.markdown("---")
st.markdown("### 📥 Export Technical SEO Audit")
col1, col2, col3 = st.columns(3)
with col1:
# JSON export
if st.button("📄 Export Full Report (JSON)", use_container_width=True):
json_data = json.dumps(results, indent=2, default=str)
st.download_button(
label="⬇️ Download JSON Report",
data=json_data,
file_name=f"technical_seo_audit_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json",
use_container_width=True
)
with col2:
# CSV export for issues
if st.button("📊 Export Issues CSV", use_container_width=True):
issues_data = self._prepare_issues_csv(results)
if issues_data:
st.download_button(
label="⬇️ Download Issues CSV",
data=issues_data,
file_name=f"technical_issues_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv",
use_container_width=True
)
else:
st.info("No issues found to export")
with col3:
# Executive summary
if st.button("📋 Executive Summary", use_container_width=True):
summary = self._generate_executive_summary(results)
st.download_button(
label="⬇️ Download Summary",
data=summary,
file_name=f"technical_seo_summary_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt",
mime="text/plain",
use_container_width=True
)
def _prepare_issues_csv(self, results: Dict[str, Any]) -> str:
"""Prepare CSV data for technical issues."""
issues_list = []
# HTTP errors
http_errors = results.get('technical_issues', {}).get('http_errors', {})
if http_errors.get('error_pages'):
for error in http_errors['error_pages']:
issues_list.append({
'Issue Type': 'HTTP Error',
'Severity': 'High',
'URL': error.get('url', ''),
'Status Code': error.get('status', ''),
'Description': f"HTTP {error.get('status', '')} error"
})
# Missing elements
missing_elements = results.get('technical_issues', {}).get('missing_elements', {})
# Add more issue types as needed...
if issues_list:
issues_df = pd.DataFrame(issues_list)
return issues_df.to_csv(index=False)
return ""
def _generate_executive_summary(self, results: Dict[str, Any]) -> str:
"""Generate executive summary report."""
website_url = results.get('website_url', 'Unknown')
timestamp = results.get('analysis_timestamp', datetime.now().isoformat())
summary = f"""
TECHNICAL SEO AUDIT - EXECUTIVE SUMMARY
======================================
Website: {website_url}
Audit Date: {timestamp}
AUDIT OVERVIEW
--------------
Pages Crawled: {results.get('crawl_overview', {}).get('pages_crawled', 0)}
HTTP Errors: {results.get('technical_issues', {}).get('http_errors', {}).get('total_errors', 0)}
Average Load Time: {results.get('performance_analysis', {}).get('load_time_analysis', {}).get('avg_load_time', 0):.2f}s
Security Score: {results.get('security_headers', {}).get('security_score', 0):.0f}%
CRITICAL FINDINGS
-----------------
"""
# Add critical findings
error_count = results.get('technical_issues', {}).get('http_errors', {}).get('total_errors', 0)
if error_count > 0:
summary += f"{error_count} pages have HTTP errors requiring immediate attention\n"
avg_load_time = results.get('performance_analysis', {}).get('load_time_analysis', {}).get('avg_load_time', 0)
if avg_load_time > 3:
summary += f"• Page load times are slow (avg: {avg_load_time:.2f}s), impacting user experience\n"
security_score = results.get('security_headers', {}).get('security_score', 0)
if security_score < 80:
summary += f"• Security headers need improvement (current score: {security_score:.0f}%)\n"
summary += f"\n\nDetailed technical audit completed by ALwrity Technical SEO Crawler\nGenerated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
return summary
# Render function for integration with main dashboard
def render_technical_seo_crawler():
"""Render the Technical SEO Crawler UI."""
ui = TechnicalSEOCrawlerUI()
ui.render()

View File

@@ -0,0 +1,58 @@
"""Text analysis tools using textstat."""
import streamlit as st
from textstat import textstat
def analyze_text(text):
"""Analyze text using textstat metrics."""
if not text:
st.warning("Please enter some text to analyze.")
return
# Calculate various metrics
metrics = {
"Flesch Reading Ease": textstat.flesch_reading_ease(text),
"Flesch-Kincaid Grade Level": textstat.flesch_kincaid_grade(text),
"Gunning Fog Index": textstat.gunning_fog(text),
"SMOG Index": textstat.smog_index(text),
"Automated Readability Index": textstat.automated_readability_index(text),
"Coleman-Liau Index": textstat.coleman_liau_index(text),
"Linsear Write Formula": textstat.linsear_write_formula(text),
"Dale-Chall Readability Score": textstat.dale_chall_readability_score(text),
"Readability Consensus": textstat.readability_consensus(text)
}
# Display metrics in a clean format
st.subheader("Text Analysis Results")
for metric, value in metrics.items():
st.metric(metric, f"{value:.2f}")
# Add visualizations
st.subheader("Visualization")
st.bar_chart(metrics)
st.title("📖 Text Readability Analyzer: Making Your Content Easy to Read")
st.write("""
This tool is your guide to writing content that's easy for your audience to understand.
Just paste in a sample of your text, and we'll break down the readability scores and offer actionable tips!
""")
text_input = st.text_area("Paste your text here:", height=200)
if st.button("Analyze!"):
with st.spinner("Analyzing your text..."):
test_data = text_input
if not test_data.strip():
st.error("Please enter text to analyze.")
else:
analyze_text(test_data)
st.subheader("Key Takeaways:")
st.write("---")
st.markdown("""
* **Don't Be Afraid to Simplify!** Often, simpler language makes content more impactful and easier to digest.
* **Aim for a Reading Level Appropriate for Your Audience:** Consider the education level, background, and familiarity of your readers.
* **Use Short Sentences:** This makes your content more scannable and easier to read.
* **Write for Everyone:** Accessibility should always be a priority. When in doubt, aim for clear, concise language!
""")