Base code
This commit is contained in:
2
backend/api/blog_writer/__init__.py
Normal file
2
backend/api/blog_writer/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
# Package init for AI Blog Writer API
|
||||
|
||||
77
backend/api/blog_writer/cache_manager.py
Normal file
77
backend/api/blog_writer/cache_manager.py
Normal file
@@ -0,0 +1,77 @@
|
||||
"""
|
||||
Cache Management System for Blog Writer API
|
||||
|
||||
Handles research and outline cache operations including statistics,
|
||||
clearing, invalidation, and entry retrieval.
|
||||
"""
|
||||
|
||||
from typing import Any, Dict, List
|
||||
from loguru import logger
|
||||
|
||||
from services.blog_writer.blog_service import BlogWriterService
|
||||
|
||||
|
||||
class CacheManager:
|
||||
"""Manages cache operations for research and outline data."""
|
||||
|
||||
def __init__(self):
|
||||
self.service = BlogWriterService()
|
||||
|
||||
def get_research_cache_stats(self) -> Dict[str, Any]:
|
||||
"""Get research cache statistics."""
|
||||
try:
|
||||
from services.cache.research_cache import research_cache
|
||||
return research_cache.get_cache_stats()
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get research cache stats: {e}")
|
||||
raise
|
||||
|
||||
def clear_research_cache(self) -> Dict[str, Any]:
|
||||
"""Clear the research cache."""
|
||||
try:
|
||||
from services.cache.research_cache import research_cache
|
||||
research_cache.clear_cache()
|
||||
return {"status": "success", "message": "Research cache cleared"}
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to clear research cache: {e}")
|
||||
raise
|
||||
|
||||
def get_outline_cache_stats(self) -> Dict[str, Any]:
|
||||
"""Get outline cache statistics."""
|
||||
try:
|
||||
stats = self.service.get_outline_cache_stats()
|
||||
return {"success": True, "stats": stats}
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get outline cache stats: {e}")
|
||||
raise
|
||||
|
||||
def clear_outline_cache(self) -> Dict[str, Any]:
|
||||
"""Clear all cached outline entries."""
|
||||
try:
|
||||
self.service.clear_outline_cache()
|
||||
return {"success": True, "message": "Outline cache cleared successfully"}
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to clear outline cache: {e}")
|
||||
raise
|
||||
|
||||
def invalidate_outline_cache_for_keywords(self, keywords: List[str]) -> Dict[str, Any]:
|
||||
"""Invalidate outline cache entries for specific keywords."""
|
||||
try:
|
||||
self.service.invalidate_outline_cache_for_keywords(keywords)
|
||||
return {"success": True, "message": f"Invalidated cache for keywords: {keywords}"}
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to invalidate outline cache for keywords {keywords}: {e}")
|
||||
raise
|
||||
|
||||
def get_recent_outline_cache_entries(self, limit: int = 20) -> Dict[str, Any]:
|
||||
"""Get recent outline cache entries for debugging."""
|
||||
try:
|
||||
entries = self.service.get_recent_outline_cache_entries(limit)
|
||||
return {"success": True, "entries": entries}
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get recent outline cache entries: {e}")
|
||||
raise
|
||||
|
||||
|
||||
# Global cache manager instance
|
||||
cache_manager = CacheManager()
|
||||
984
backend/api/blog_writer/router.py
Normal file
984
backend/api/blog_writer/router.py
Normal file
@@ -0,0 +1,984 @@
|
||||
"""
|
||||
AI Blog Writer API Router
|
||||
|
||||
Main router for blog writing operations including research, outline generation,
|
||||
content creation, SEO analysis, and publishing.
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, HTTPException, Depends
|
||||
from typing import Any, Dict, List, Optional
|
||||
from pydantic import BaseModel, Field
|
||||
from loguru import logger
|
||||
from middleware.auth_middleware import get_current_user
|
||||
from sqlalchemy.orm import Session
|
||||
from services.database import get_db as get_db_dependency
|
||||
from utils.text_asset_tracker import save_and_track_text_content
|
||||
|
||||
from models.blog_models import (
|
||||
BlogResearchRequest,
|
||||
BlogResearchResponse,
|
||||
BlogOutlineRequest,
|
||||
BlogOutlineResponse,
|
||||
BlogOutlineRefineRequest,
|
||||
BlogSectionRequest,
|
||||
BlogSectionResponse,
|
||||
BlogOptimizeRequest,
|
||||
BlogOptimizeResponse,
|
||||
BlogSEOAnalyzeRequest,
|
||||
BlogSEOAnalyzeResponse,
|
||||
BlogSEOMetadataRequest,
|
||||
BlogSEOMetadataResponse,
|
||||
BlogPublishRequest,
|
||||
BlogPublishResponse,
|
||||
HallucinationCheckRequest,
|
||||
HallucinationCheckResponse,
|
||||
)
|
||||
from services.blog_writer.blog_service import BlogWriterService
|
||||
from services.blog_writer.seo.blog_seo_recommendation_applier import BlogSEORecommendationApplier
|
||||
from .task_manager import task_manager
|
||||
from .cache_manager import cache_manager
|
||||
from models.blog_models import MediumBlogGenerateRequest
|
||||
|
||||
|
||||
router = APIRouter(prefix="/api/blog", tags=["AI Blog Writer"])
|
||||
|
||||
service = BlogWriterService()
|
||||
recommendation_applier = BlogSEORecommendationApplier()
|
||||
|
||||
|
||||
# Use the proper database dependency from services.database
|
||||
get_db = get_db_dependency
|
||||
# ---------------------------
|
||||
# SEO Recommendation Endpoints
|
||||
# ---------------------------
|
||||
|
||||
|
||||
class RecommendationItem(BaseModel):
|
||||
category: str = Field(..., description="Recommendation category, e.g. Structure")
|
||||
priority: str = Field(..., description="Priority level: High | Medium | Low")
|
||||
recommendation: str = Field(..., description="Action to perform")
|
||||
impact: str = Field(..., description="Expected impact or rationale")
|
||||
|
||||
|
||||
class SEOApplyRecommendationsRequest(BaseModel):
|
||||
title: str = Field(..., description="Current blog title")
|
||||
sections: List[Dict[str, Any]] = Field(..., description="Array of sections with id, heading, content")
|
||||
outline: List[Dict[str, Any]] = Field(default_factory=list, description="Outline structure for context")
|
||||
research: Dict[str, Any] = Field(default_factory=dict, description="Research data used for the blog")
|
||||
recommendations: List[RecommendationItem] = Field(..., description="Actionable recommendations to apply")
|
||||
persona: Dict[str, Any] = Field(default_factory=dict, description="Persona settings if available")
|
||||
tone: str | None = Field(default=None, description="Desired tone override")
|
||||
audience: str | None = Field(default=None, description="Target audience override")
|
||||
|
||||
|
||||
@router.post("/seo/apply-recommendations")
|
||||
async def apply_seo_recommendations(
|
||||
request: SEOApplyRecommendationsRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user)
|
||||
) -> Dict[str, Any]:
|
||||
"""Apply actionable SEO recommendations and return updated content."""
|
||||
try:
|
||||
# Extract Clerk user ID (required)
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
user_id = str(current_user.get('id', ''))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Invalid user ID in authentication token")
|
||||
|
||||
result = await recommendation_applier.apply_recommendations(request.dict(), user_id=user_id)
|
||||
if not result.get("success"):
|
||||
raise HTTPException(status_code=500, detail=result.get("error", "Failed to apply recommendations"))
|
||||
return result
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to apply SEO recommendations: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
|
||||
@router.get("/health")
|
||||
async def health() -> Dict[str, Any]:
|
||||
"""Health check endpoint."""
|
||||
return {"status": "ok", "service": "ai_blog_writer"}
|
||||
|
||||
|
||||
# Research Endpoints
|
||||
@router.post("/research/start")
|
||||
async def start_research(
|
||||
request: BlogResearchRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user)
|
||||
) -> Dict[str, Any]:
|
||||
"""Start a research operation and return a task ID for polling."""
|
||||
try:
|
||||
# Extract Clerk user ID (required)
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
user_id = str(current_user.get('id', ''))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Invalid user ID in authentication token")
|
||||
|
||||
task_id = await task_manager.start_research_task(request, user_id)
|
||||
return {"task_id": task_id, "status": "started"}
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to start research: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.get("/research/status/{task_id}")
|
||||
async def get_research_status(task_id: str) -> Dict[str, Any]:
|
||||
"""Get the status of a research operation."""
|
||||
try:
|
||||
status = await task_manager.get_task_status(task_id)
|
||||
if status is None:
|
||||
raise HTTPException(status_code=404, detail="Task not found")
|
||||
|
||||
# If task failed with subscription error, return HTTP error so frontend interceptor can catch it
|
||||
if status.get('status') == 'failed' and status.get('error_status') in [429, 402]:
|
||||
error_data = status.get('error_data', {}) or {}
|
||||
error_status = status.get('error_status', 429)
|
||||
|
||||
if not isinstance(error_data, dict):
|
||||
logger.warning(f"Research task {task_id} error_data not dict: {error_data}")
|
||||
error_data = {'error': str(error_data)}
|
||||
|
||||
# Determine provider and usage info
|
||||
stored_error_message = status.get('error', error_data.get('error'))
|
||||
provider = error_data.get('provider', 'unknown')
|
||||
usage_info = error_data.get('usage_info')
|
||||
|
||||
if not usage_info:
|
||||
usage_info = {
|
||||
'provider': provider,
|
||||
'message': stored_error_message,
|
||||
'error_type': error_data.get('error_type', 'unknown')
|
||||
}
|
||||
# Include any known fields from error_data
|
||||
for key in ['current_tokens', 'requested_tokens', 'limit', 'current_calls']:
|
||||
if key in error_data:
|
||||
usage_info[key] = error_data[key]
|
||||
|
||||
# Build error message for detail
|
||||
error_msg = error_data.get('message', stored_error_message or 'Subscription limit exceeded')
|
||||
|
||||
# Log the subscription error with all context
|
||||
logger.warning(f"Research task {task_id} failed with subscription error {error_status}: {error_msg}")
|
||||
logger.warning(f" Provider: {provider}, Usage Info: {usage_info}")
|
||||
|
||||
# Use JSONResponse to ensure detail is returned as-is, not wrapped in an array
|
||||
from fastapi.responses import JSONResponse
|
||||
return JSONResponse(
|
||||
status_code=error_status,
|
||||
content={
|
||||
'error': error_data.get('error', stored_error_message or 'Subscription limit exceeded'),
|
||||
'message': error_msg,
|
||||
'provider': provider,
|
||||
'usage_info': usage_info
|
||||
}
|
||||
)
|
||||
|
||||
logger.info(f"Research status request for {task_id}: {status['status']} with {len(status.get('progress_messages', []))} progress messages")
|
||||
return status
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get research status for {task_id}: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
# Outline Endpoints
|
||||
@router.post("/outline/start")
|
||||
async def start_outline_generation(
|
||||
request: BlogOutlineRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user)
|
||||
) -> Dict[str, Any]:
|
||||
"""Start an outline generation operation and return a task ID for polling."""
|
||||
try:
|
||||
# Extract Clerk user ID (required)
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
user_id = str(current_user.get('id'))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="User ID not found in authentication token")
|
||||
|
||||
task_id = task_manager.start_outline_task(request, user_id)
|
||||
return {"task_id": task_id, "status": "started"}
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to start outline generation: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.get("/outline/status/{task_id}")
|
||||
async def get_outline_status(task_id: str) -> Dict[str, Any]:
|
||||
"""Get the status of an outline generation operation."""
|
||||
try:
|
||||
status = await task_manager.get_task_status(task_id)
|
||||
if status is None:
|
||||
raise HTTPException(status_code=404, detail="Task not found")
|
||||
|
||||
return status
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get outline status for {task_id}: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/outline/refine", response_model=BlogOutlineResponse)
|
||||
async def refine_outline(request: BlogOutlineRefineRequest) -> BlogOutlineResponse:
|
||||
"""Refine an existing outline with AI improvements."""
|
||||
try:
|
||||
return await service.refine_outline(request)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to refine outline: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/outline/enhance-section")
|
||||
async def enhance_section(section_data: Dict[str, Any], focus: str = "general improvement"):
|
||||
"""Enhance a specific section with AI improvements."""
|
||||
try:
|
||||
from models.blog_models import BlogOutlineSection
|
||||
section = BlogOutlineSection(**section_data)
|
||||
enhanced_section = await service.enhance_section_with_ai(section, focus)
|
||||
return enhanced_section.dict()
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to enhance section: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/outline/optimize")
|
||||
async def optimize_outline(outline_data: Dict[str, Any], focus: str = "general optimization"):
|
||||
"""Optimize entire outline for better flow, SEO, and engagement."""
|
||||
try:
|
||||
from models.blog_models import BlogOutlineSection
|
||||
outline = [BlogOutlineSection(**section) for section in outline_data.get('outline', [])]
|
||||
optimized_outline = await service.optimize_outline_with_ai(outline, focus)
|
||||
return {"outline": [section.dict() for section in optimized_outline]}
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to optimize outline: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/outline/rebalance")
|
||||
async def rebalance_outline(outline_data: Dict[str, Any], target_words: int = 1500):
|
||||
"""Rebalance word count distribution across outline sections."""
|
||||
try:
|
||||
from models.blog_models import BlogOutlineSection
|
||||
outline = [BlogOutlineSection(**section) for section in outline_data.get('outline', [])]
|
||||
rebalanced_outline = service.rebalance_word_counts(outline, target_words)
|
||||
return {"outline": [section.dict() for section in rebalanced_outline]}
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to rebalance outline: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
# Content Generation Endpoints
|
||||
@router.post("/section/generate", response_model=BlogSectionResponse)
|
||||
async def generate_section(
|
||||
request: BlogSectionRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user),
|
||||
db: Session = Depends(get_db)
|
||||
) -> BlogSectionResponse:
|
||||
"""Generate content for a specific section."""
|
||||
try:
|
||||
response = await service.generate_section(request)
|
||||
|
||||
# Save and track text content (non-blocking)
|
||||
if response.markdown:
|
||||
try:
|
||||
user_id = str(current_user.get('id', '')) if current_user else None
|
||||
if user_id:
|
||||
section_heading = getattr(request, 'section_heading', getattr(request, 'heading', 'Section'))
|
||||
save_and_track_text_content(
|
||||
db=db,
|
||||
user_id=user_id,
|
||||
content=response.markdown,
|
||||
source_module="blog_writer",
|
||||
title=f"Blog Section: {section_heading[:60]}",
|
||||
description=f"Blog section content",
|
||||
prompt=f"Section: {section_heading}\nKeywords: {getattr(request, 'keywords', [])}",
|
||||
tags=["blog", "section", "content"],
|
||||
asset_metadata={
|
||||
"section_id": getattr(request, 'section_id', None),
|
||||
"word_count": len(response.markdown.split()),
|
||||
},
|
||||
subdirectory="sections",
|
||||
file_extension=".md"
|
||||
)
|
||||
except Exception as track_error:
|
||||
logger.warning(f"Failed to track blog section asset: {track_error}")
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate section: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/content/start")
|
||||
async def start_content_generation(
|
||||
request: Dict[str, Any],
|
||||
current_user: Dict[str, Any] = Depends(get_current_user)
|
||||
) -> Dict[str, Any]:
|
||||
"""Start full content generation and return a task id for polling.
|
||||
|
||||
Accepts a payload compatible with MediumBlogGenerateRequest to minimize duplication.
|
||||
"""
|
||||
try:
|
||||
# Extract Clerk user ID (required)
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
user_id = str(current_user.get('id'))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="User ID not found in authentication token")
|
||||
|
||||
# Map dict to MediumBlogGenerateRequest for reuse
|
||||
from models.blog_models import MediumBlogGenerateRequest, MediumSectionOutline, PersonaInfo
|
||||
sections = [MediumSectionOutline(**s) for s in request.get("sections", [])]
|
||||
persona = None
|
||||
if request.get("persona"):
|
||||
persona = PersonaInfo(**request.get("persona"))
|
||||
req = MediumBlogGenerateRequest(
|
||||
title=request.get("title", "Untitled Blog"),
|
||||
sections=sections,
|
||||
persona=persona,
|
||||
tone=request.get("tone"),
|
||||
audience=request.get("audience"),
|
||||
globalTargetWords=request.get("globalTargetWords", 1000),
|
||||
researchKeywords=request.get("researchKeywords") or request.get("keywords"),
|
||||
)
|
||||
task_id = task_manager.start_content_generation_task(req, user_id)
|
||||
return {"task_id": task_id, "status": "started"}
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to start content generation: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.get("/content/status/{task_id}")
|
||||
async def content_generation_status(
|
||||
task_id: str,
|
||||
current_user: Optional[Dict[str, Any]] = Depends(get_current_user),
|
||||
db: Session = Depends(get_db)
|
||||
) -> Dict[str, Any]:
|
||||
"""Poll status for content generation task."""
|
||||
try:
|
||||
status = await task_manager.get_task_status(task_id)
|
||||
if status is None:
|
||||
raise HTTPException(status_code=404, detail="Task not found")
|
||||
|
||||
# Track blog content when task completes (non-blocking)
|
||||
if status.get('status') == 'completed' and status.get('result'):
|
||||
try:
|
||||
result = status.get('result', {})
|
||||
if result.get('sections') and len(result.get('sections', [])) > 0:
|
||||
user_id = str(current_user.get('id', '')) if current_user else None
|
||||
if user_id:
|
||||
# Combine all sections into full blog content
|
||||
blog_content = f"# {result.get('title', 'Untitled Blog')}\n\n"
|
||||
for section in result.get('sections', []):
|
||||
blog_content += f"\n## {section.get('heading', 'Section')}\n\n{section.get('content', '')}\n\n"
|
||||
|
||||
save_and_track_text_content(
|
||||
db=db,
|
||||
user_id=user_id,
|
||||
content=blog_content,
|
||||
source_module="blog_writer",
|
||||
title=f"Blog: {result.get('title', 'Untitled Blog')[:60]}",
|
||||
description=f"Complete blog post with {len(result.get('sections', []))} sections",
|
||||
prompt=f"Title: {result.get('title', 'Untitled')}\nSections: {len(result.get('sections', []))}",
|
||||
tags=["blog", "complete", "content"],
|
||||
asset_metadata={
|
||||
"section_count": len(result.get('sections', [])),
|
||||
"model": result.get('model'),
|
||||
},
|
||||
subdirectory="complete",
|
||||
file_extension=".md"
|
||||
)
|
||||
except Exception as track_error:
|
||||
logger.warning(f"Failed to track blog content asset: {track_error}")
|
||||
|
||||
# If task failed with subscription error, return HTTP error so frontend interceptor can catch it
|
||||
if status.get('status') == 'failed' and status.get('error_status') in [429, 402]:
|
||||
error_data = status.get('error_data', {}) or {}
|
||||
error_status = status.get('error_status', 429)
|
||||
|
||||
if not isinstance(error_data, dict):
|
||||
logger.warning(f"Content generation task {task_id} error_data not dict: {error_data}")
|
||||
error_data = {'error': str(error_data)}
|
||||
|
||||
# Determine provider and usage info
|
||||
stored_error_message = status.get('error', error_data.get('error'))
|
||||
provider = error_data.get('provider', 'unknown')
|
||||
usage_info = error_data.get('usage_info')
|
||||
|
||||
if not usage_info:
|
||||
usage_info = {
|
||||
'provider': provider,
|
||||
'message': stored_error_message,
|
||||
'error_type': error_data.get('error_type', 'unknown')
|
||||
}
|
||||
# Include any known fields from error_data
|
||||
for key in ['current_tokens', 'requested_tokens', 'limit', 'current_calls']:
|
||||
if key in error_data:
|
||||
usage_info[key] = error_data[key]
|
||||
|
||||
# Build error message for detail
|
||||
error_msg = error_data.get('message', stored_error_message or 'Subscription limit exceeded')
|
||||
|
||||
# Log the subscription error with all context
|
||||
logger.warning(f"Content generation task {task_id} failed with subscription error {error_status}: {error_msg}")
|
||||
logger.warning(f" Provider: {provider}, Usage Info: {usage_info}")
|
||||
|
||||
# Use JSONResponse to ensure detail is returned as-is, not wrapped in an array
|
||||
from fastapi.responses import JSONResponse
|
||||
return JSONResponse(
|
||||
status_code=error_status,
|
||||
content={
|
||||
'error': error_data.get('error', stored_error_message or 'Subscription limit exceeded'),
|
||||
'message': error_msg,
|
||||
'provider': provider,
|
||||
'usage_info': usage_info
|
||||
}
|
||||
)
|
||||
|
||||
return status
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get content generation status for {task_id}: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.get("/section/{section_id}/continuity")
|
||||
async def get_section_continuity(section_id: str) -> Dict[str, Any]:
|
||||
"""Fetch last computed continuity metrics for a section (if available)."""
|
||||
try:
|
||||
# Access the in-memory continuity from the generator
|
||||
gen = service.content_generator
|
||||
# Find the last stored summary for the given section id
|
||||
# For now, expose the most recent metrics if the section was just generated
|
||||
# We keep a small in-memory snapshot on the generator object
|
||||
continuity: Dict[str, Any] = getattr(gen, "_last_continuity", {})
|
||||
metrics = continuity.get(section_id)
|
||||
return {"section_id": section_id, "continuity_metrics": metrics}
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get section continuity for {section_id}: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/flow-analysis/basic")
|
||||
async def analyze_flow_basic(request: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Analyze flow metrics for entire blog using single AI call (cost-effective)."""
|
||||
try:
|
||||
result = await service.analyze_flow_basic(request)
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to perform basic flow analysis: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/flow-analysis/advanced")
|
||||
async def analyze_flow_advanced(request: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Analyze flow metrics for each section individually (detailed but expensive)."""
|
||||
try:
|
||||
result = await service.analyze_flow_advanced(request)
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to perform advanced flow analysis: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/section/optimize", response_model=BlogOptimizeResponse)
|
||||
async def optimize_section(
|
||||
request: BlogOptimizeRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user),
|
||||
db: Session = Depends(get_db)
|
||||
) -> BlogOptimizeResponse:
|
||||
"""Optimize a specific section for better quality and engagement."""
|
||||
try:
|
||||
response = await service.optimize_section(request)
|
||||
|
||||
# Save and track text content (non-blocking)
|
||||
if response.optimized:
|
||||
try:
|
||||
user_id = str(current_user.get('id', '')) if current_user else None
|
||||
if user_id:
|
||||
save_and_track_text_content(
|
||||
db=db,
|
||||
user_id=user_id,
|
||||
content=response.optimized,
|
||||
source_module="blog_writer",
|
||||
title=f"Optimized Blog Section",
|
||||
description=f"Optimized blog section content",
|
||||
prompt=f"Original Content: {request.content[:200]}\nGoals: {request.goals}",
|
||||
tags=["blog", "section", "optimized"],
|
||||
asset_metadata={
|
||||
"optimization_goals": request.goals,
|
||||
"word_count": len(response.optimized.split()),
|
||||
},
|
||||
subdirectory="sections/optimized",
|
||||
file_extension=".md"
|
||||
)
|
||||
except Exception as track_error:
|
||||
logger.warning(f"Failed to track optimized blog section asset: {track_error}")
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to optimize section: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
# Quality Assurance Endpoints
|
||||
@router.post("/quality/hallucination-check", response_model=HallucinationCheckResponse)
|
||||
async def hallucination_check(request: HallucinationCheckRequest) -> HallucinationCheckResponse:
|
||||
"""Check content for potential hallucinations and factual inaccuracies."""
|
||||
try:
|
||||
return await service.hallucination_check(request)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to perform hallucination check: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
# SEO Endpoints
|
||||
@router.post("/seo/analyze", response_model=BlogSEOAnalyzeResponse)
|
||||
async def seo_analyze(
|
||||
request: BlogSEOAnalyzeRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user)
|
||||
) -> BlogSEOAnalyzeResponse:
|
||||
"""Analyze content for SEO optimization opportunities."""
|
||||
try:
|
||||
# Extract Clerk user ID (required)
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
user_id = str(current_user.get('id', ''))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Invalid user ID in authentication token")
|
||||
|
||||
return await service.seo_analyze(request, user_id=user_id)
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to perform SEO analysis: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/seo/metadata", response_model=BlogSEOMetadataResponse)
|
||||
async def seo_metadata(
|
||||
request: BlogSEOMetadataRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user)
|
||||
) -> BlogSEOMetadataResponse:
|
||||
"""Generate SEO metadata for the blog post."""
|
||||
try:
|
||||
# Extract Clerk user ID (required)
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
user_id = str(current_user.get('id', ''))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Invalid user ID in authentication token")
|
||||
|
||||
return await service.seo_metadata(request, user_id=user_id)
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate SEO metadata: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
# Publishing Endpoints
|
||||
@router.post("/publish", response_model=BlogPublishResponse)
|
||||
async def publish(request: BlogPublishRequest) -> BlogPublishResponse:
|
||||
"""Publish the blog post to the specified platform."""
|
||||
try:
|
||||
return await service.publish(request)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to publish blog: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
# Cache Management Endpoints
|
||||
@router.get("/cache/stats")
|
||||
async def get_cache_stats() -> Dict[str, Any]:
|
||||
"""Get research cache statistics."""
|
||||
try:
|
||||
return cache_manager.get_research_cache_stats()
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get cache stats: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.delete("/cache/clear")
|
||||
async def clear_cache() -> Dict[str, Any]:
|
||||
"""Clear the research cache."""
|
||||
try:
|
||||
return cache_manager.clear_research_cache()
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to clear cache: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.get("/cache/outline/stats")
|
||||
async def get_outline_cache_stats():
|
||||
"""Get outline cache statistics."""
|
||||
try:
|
||||
return cache_manager.get_outline_cache_stats()
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get outline cache stats: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.delete("/cache/outline/clear")
|
||||
async def clear_outline_cache():
|
||||
"""Clear all cached outline entries."""
|
||||
try:
|
||||
return cache_manager.clear_outline_cache()
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to clear outline cache: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/cache/outline/invalidate")
|
||||
async def invalidate_outline_cache(request: Dict[str, List[str]]):
|
||||
"""Invalidate outline cache entries for specific keywords."""
|
||||
try:
|
||||
return cache_manager.invalidate_outline_cache_for_keywords(request["keywords"])
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to invalidate outline cache: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.get("/cache/outline/entries")
|
||||
async def get_outline_cache_entries(limit: int = 20):
|
||||
"""Get recent outline cache entries for debugging."""
|
||||
try:
|
||||
return cache_manager.get_recent_outline_cache_entries(limit)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get outline cache entries: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
# ---------------------------
|
||||
# Medium Blog Generation API
|
||||
# ---------------------------
|
||||
|
||||
@router.post("/generate/medium/start")
|
||||
async def start_medium_generation(
|
||||
request: MediumBlogGenerateRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user)
|
||||
):
|
||||
"""Start medium-length blog generation (≤1000 words) and return a task id."""
|
||||
try:
|
||||
# Extract Clerk user ID (required)
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
user_id = str(current_user.get('id'))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="User ID not found in authentication token")
|
||||
|
||||
# Simple server-side guard
|
||||
if (request.globalTargetWords or 1000) > 1000:
|
||||
raise HTTPException(status_code=400, detail="Global target words exceed 1000; use per-section generation")
|
||||
|
||||
task_id = task_manager.start_medium_generation_task(request, user_id)
|
||||
return {"task_id": task_id, "status": "started"}
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to start medium generation: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.get("/generate/medium/status/{task_id}")
|
||||
async def medium_generation_status(
|
||||
task_id: str,
|
||||
current_user: Optional[Dict[str, Any]] = Depends(get_current_user),
|
||||
db: Session = Depends(get_db)
|
||||
):
|
||||
"""Poll status for medium blog generation task."""
|
||||
try:
|
||||
status = await task_manager.get_task_status(task_id)
|
||||
if status is None:
|
||||
raise HTTPException(status_code=404, detail="Task not found")
|
||||
|
||||
# Track blog content when task completes (non-blocking)
|
||||
if status.get('status') == 'completed' and status.get('result'):
|
||||
try:
|
||||
result = status.get('result', {})
|
||||
if result.get('sections') and len(result.get('sections', [])) > 0:
|
||||
user_id = str(current_user.get('id', '')) if current_user else None
|
||||
if user_id:
|
||||
# Combine all sections into full blog content
|
||||
blog_content = f"# {result.get('title', 'Untitled Blog')}\n\n"
|
||||
for section in result.get('sections', []):
|
||||
blog_content += f"\n## {section.get('heading', 'Section')}\n\n{section.get('content', '')}\n\n"
|
||||
|
||||
save_and_track_text_content(
|
||||
db=db,
|
||||
user_id=user_id,
|
||||
content=blog_content,
|
||||
source_module="blog_writer",
|
||||
title=f"Medium Blog: {result.get('title', 'Untitled Blog')[:60]}",
|
||||
description=f"Medium-length blog post with {len(result.get('sections', []))} sections",
|
||||
prompt=f"Title: {result.get('title', 'Untitled')}\nSections: {len(result.get('sections', []))}",
|
||||
tags=["blog", "medium", "complete"],
|
||||
asset_metadata={
|
||||
"section_count": len(result.get('sections', [])),
|
||||
"model": result.get('model'),
|
||||
"generation_time_ms": result.get('generation_time_ms'),
|
||||
},
|
||||
subdirectory="medium",
|
||||
file_extension=".md"
|
||||
)
|
||||
except Exception as track_error:
|
||||
logger.warning(f"Failed to track medium blog asset: {track_error}")
|
||||
|
||||
# If task failed with subscription error, return HTTP error so frontend interceptor can catch it
|
||||
if status.get('status') == 'failed' and status.get('error_status') in [429, 402]:
|
||||
error_data = status.get('error_data', {}) or {}
|
||||
error_status = status.get('error_status', 429)
|
||||
|
||||
if not isinstance(error_data, dict):
|
||||
logger.warning(f"Medium generation task {task_id} error_data not dict: {error_data}")
|
||||
error_data = {'error': str(error_data)}
|
||||
|
||||
# Determine provider and usage info
|
||||
stored_error_message = status.get('error', error_data.get('error'))
|
||||
provider = error_data.get('provider', 'unknown')
|
||||
usage_info = error_data.get('usage_info')
|
||||
|
||||
if not usage_info:
|
||||
usage_info = {
|
||||
'provider': provider,
|
||||
'message': stored_error_message,
|
||||
'error_type': error_data.get('error_type', 'unknown')
|
||||
}
|
||||
# Include any known fields from error_data
|
||||
for key in ['current_tokens', 'requested_tokens', 'limit', 'current_calls']:
|
||||
if key in error_data:
|
||||
usage_info[key] = error_data[key]
|
||||
|
||||
# Build error message for detail
|
||||
error_msg = error_data.get('message', stored_error_message or 'Subscription limit exceeded')
|
||||
|
||||
# Log the subscription error with all context
|
||||
logger.warning(f"Medium generation task {task_id} failed with subscription error {error_status}: {error_msg}")
|
||||
logger.warning(f" Provider: {provider}, Usage Info: {usage_info}")
|
||||
|
||||
# Use JSONResponse to ensure detail is returned as-is, not wrapped in an array
|
||||
from fastapi.responses import JSONResponse
|
||||
return JSONResponse(
|
||||
status_code=error_status,
|
||||
content={
|
||||
'error': error_data.get('error', stored_error_message or 'Subscription limit exceeded'),
|
||||
'message': error_msg,
|
||||
'provider': provider,
|
||||
'usage_info': usage_info
|
||||
}
|
||||
)
|
||||
|
||||
return status
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get medium generation status for {task_id}: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@router.post("/rewrite/start")
|
||||
async def start_blog_rewrite(request: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Start blog rewrite task with user feedback."""
|
||||
try:
|
||||
task_id = service.start_blog_rewrite(request)
|
||||
return {"task_id": task_id, "status": "started"}
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to start blog rewrite: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@router.get("/rewrite/status/{task_id}")
|
||||
async def rewrite_status(task_id: str):
|
||||
"""Poll status for blog rewrite task."""
|
||||
try:
|
||||
status = await service.task_manager.get_task_status(task_id)
|
||||
if status is None:
|
||||
raise HTTPException(status_code=404, detail="Task not found")
|
||||
return status
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get rewrite status for {task_id}: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/titles/generate-seo")
|
||||
async def generate_seo_titles(
|
||||
request: Dict[str, Any],
|
||||
current_user: Dict[str, Any] = Depends(get_current_user),
|
||||
db: Session = Depends(get_db)
|
||||
) -> Dict[str, Any]:
|
||||
"""Generate 5 SEO-optimized blog titles using research and outline data."""
|
||||
try:
|
||||
# Extract Clerk user ID (required)
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
user_id = str(current_user.get('id', ''))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Invalid user ID in authentication token")
|
||||
|
||||
# Import here to avoid circular dependencies
|
||||
from services.blog_writer.outline.seo_title_generator import SEOTitleGenerator
|
||||
from models.blog_models import BlogResearchResponse, BlogOutlineSection
|
||||
|
||||
# Parse request data
|
||||
research_data = request.get('research')
|
||||
outline_data = request.get('outline', [])
|
||||
primary_keywords = request.get('primary_keywords', [])
|
||||
secondary_keywords = request.get('secondary_keywords', [])
|
||||
content_angles = request.get('content_angles', [])
|
||||
search_intent = request.get('search_intent', 'informational')
|
||||
word_count = request.get('word_count', 1500)
|
||||
|
||||
if not research_data:
|
||||
raise HTTPException(status_code=400, detail="Research data is required")
|
||||
|
||||
# Convert to models
|
||||
research = BlogResearchResponse(**research_data)
|
||||
outline = [BlogOutlineSection(**section) for section in outline_data]
|
||||
|
||||
# Generate titles
|
||||
title_generator = SEOTitleGenerator()
|
||||
titles = await title_generator.generate_seo_titles(
|
||||
research=research,
|
||||
outline=outline,
|
||||
primary_keywords=primary_keywords,
|
||||
secondary_keywords=secondary_keywords,
|
||||
content_angles=content_angles,
|
||||
search_intent=search_intent,
|
||||
word_count=word_count,
|
||||
user_id=user_id
|
||||
)
|
||||
|
||||
# Save and track titles (non-blocking)
|
||||
if titles and len(titles) > 0:
|
||||
try:
|
||||
titles_content = "# SEO Blog Titles\n\n" + "\n".join([f"{i+1}. {title}" for i, title in enumerate(titles)])
|
||||
save_and_track_text_content(
|
||||
db=db,
|
||||
user_id=user_id,
|
||||
content=titles_content,
|
||||
source_module="blog_writer",
|
||||
title=f"SEO Blog Titles: {primary_keywords[0] if primary_keywords else 'Blog'}",
|
||||
description=f"SEO-optimized blog title suggestions",
|
||||
prompt=f"Primary Keywords: {primary_keywords}\nSearch Intent: {search_intent}\nWord Count: {word_count}",
|
||||
tags=["blog", "titles", "seo"],
|
||||
asset_metadata={
|
||||
"title_count": len(titles),
|
||||
"primary_keywords": primary_keywords,
|
||||
"search_intent": search_intent,
|
||||
},
|
||||
subdirectory="titles",
|
||||
file_extension=".md"
|
||||
)
|
||||
except Exception as track_error:
|
||||
logger.warning(f"Failed to track SEO titles asset: {track_error}")
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"titles": titles
|
||||
}
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate SEO titles: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/introductions/generate")
|
||||
async def generate_introductions(
|
||||
request: Dict[str, Any],
|
||||
current_user: Dict[str, Any] = Depends(get_current_user),
|
||||
db: Session = Depends(get_db)
|
||||
) -> Dict[str, Any]:
|
||||
"""Generate 3 varied blog introductions using research, outline, and content."""
|
||||
try:
|
||||
# Extract Clerk user ID (required)
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
user_id = str(current_user.get('id', ''))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Invalid user ID in authentication token")
|
||||
|
||||
# Import here to avoid circular dependencies
|
||||
from services.blog_writer.content.introduction_generator import IntroductionGenerator
|
||||
from models.blog_models import BlogResearchResponse, BlogOutlineSection
|
||||
|
||||
# Parse request data
|
||||
blog_title = request.get('blog_title', '')
|
||||
research_data = request.get('research')
|
||||
outline_data = request.get('outline', [])
|
||||
sections_content = request.get('sections_content', {})
|
||||
primary_keywords = request.get('primary_keywords', [])
|
||||
search_intent = request.get('search_intent', 'informational')
|
||||
|
||||
if not research_data:
|
||||
raise HTTPException(status_code=400, detail="Research data is required")
|
||||
if not blog_title:
|
||||
raise HTTPException(status_code=400, detail="Blog title is required")
|
||||
|
||||
# Convert to models
|
||||
research = BlogResearchResponse(**research_data)
|
||||
outline = [BlogOutlineSection(**section) for section in outline_data]
|
||||
|
||||
# Generate introductions
|
||||
intro_generator = IntroductionGenerator()
|
||||
introductions = await intro_generator.generate_introductions(
|
||||
blog_title=blog_title,
|
||||
research=research,
|
||||
outline=outline,
|
||||
sections_content=sections_content,
|
||||
primary_keywords=primary_keywords,
|
||||
search_intent=search_intent,
|
||||
user_id=user_id
|
||||
)
|
||||
|
||||
# Save and track introductions (non-blocking)
|
||||
if introductions and len(introductions) > 0:
|
||||
try:
|
||||
intro_content = f"# Blog Introductions for: {blog_title}\n\n"
|
||||
for i, intro in enumerate(introductions, 1):
|
||||
intro_content += f"## Introduction {i}\n\n{intro}\n\n"
|
||||
|
||||
save_and_track_text_content(
|
||||
db=db,
|
||||
user_id=user_id,
|
||||
content=intro_content,
|
||||
source_module="blog_writer",
|
||||
title=f"Blog Introductions: {blog_title[:60]}",
|
||||
description=f"Blog introduction variations",
|
||||
prompt=f"Blog Title: {blog_title}\nPrimary Keywords: {primary_keywords}\nSearch Intent: {search_intent}",
|
||||
tags=["blog", "introductions"],
|
||||
asset_metadata={
|
||||
"introduction_count": len(introductions),
|
||||
"blog_title": blog_title,
|
||||
"search_intent": search_intent,
|
||||
},
|
||||
subdirectory="introductions",
|
||||
file_extension=".md"
|
||||
)
|
||||
except Exception as track_error:
|
||||
logger.warning(f"Failed to track blog introductions asset: {track_error}")
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"introductions": introductions
|
||||
}
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate introductions: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
311
backend/api/blog_writer/seo_analysis.py
Normal file
311
backend/api/blog_writer/seo_analysis.py
Normal file
@@ -0,0 +1,311 @@
|
||||
"""
|
||||
Blog Writer SEO Analysis API Endpoint
|
||||
|
||||
Provides API endpoint for analyzing blog content SEO with parallel processing
|
||||
and CopilotKit integration for real-time progress updates.
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, HTTPException, BackgroundTasks, Depends
|
||||
from pydantic import BaseModel
|
||||
from typing import Dict, Any, Optional
|
||||
from loguru import logger
|
||||
from datetime import datetime
|
||||
|
||||
from services.blog_writer.seo.blog_content_seo_analyzer import BlogContentSEOAnalyzer
|
||||
from services.blog_writer.core.blog_writer_service import BlogWriterService
|
||||
from middleware.auth_middleware import get_current_user
|
||||
|
||||
|
||||
router = APIRouter(prefix="/api/blog-writer/seo", tags=["Blog SEO Analysis"])
|
||||
|
||||
|
||||
class SEOAnalysisRequest(BaseModel):
|
||||
"""Request model for SEO analysis"""
|
||||
blog_content: str
|
||||
blog_title: Optional[str] = None
|
||||
research_data: Dict[str, Any]
|
||||
user_id: Optional[str] = None
|
||||
session_id: Optional[str] = None
|
||||
|
||||
|
||||
class SEOAnalysisResponse(BaseModel):
|
||||
"""Response model for SEO analysis"""
|
||||
success: bool
|
||||
analysis_id: str
|
||||
overall_score: float
|
||||
category_scores: Dict[str, float]
|
||||
analysis_summary: Dict[str, Any]
|
||||
actionable_recommendations: list
|
||||
detailed_analysis: Optional[Dict[str, Any]] = None
|
||||
visualization_data: Optional[Dict[str, Any]] = None
|
||||
generated_at: str
|
||||
error: Optional[str] = None
|
||||
|
||||
|
||||
class SEOAnalysisProgress(BaseModel):
|
||||
"""Progress update model for real-time updates"""
|
||||
analysis_id: str
|
||||
stage: str
|
||||
progress: int
|
||||
message: str
|
||||
timestamp: str
|
||||
|
||||
|
||||
# Initialize analyzer
|
||||
seo_analyzer = BlogContentSEOAnalyzer()
|
||||
blog_writer_service = BlogWriterService()
|
||||
|
||||
|
||||
@router.post("/analyze", response_model=SEOAnalysisResponse)
|
||||
async def analyze_blog_seo(
|
||||
request: SEOAnalysisRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user)
|
||||
):
|
||||
"""
|
||||
Analyze blog content for SEO optimization
|
||||
|
||||
This endpoint performs comprehensive SEO analysis including:
|
||||
- Content structure analysis
|
||||
- Keyword optimization analysis
|
||||
- Readability assessment
|
||||
- Content quality evaluation
|
||||
- AI-powered insights generation
|
||||
|
||||
Args:
|
||||
request: SEOAnalysisRequest containing blog content and research data
|
||||
current_user: Authenticated user from middleware
|
||||
|
||||
Returns:
|
||||
SEOAnalysisResponse with comprehensive analysis results
|
||||
"""
|
||||
try:
|
||||
logger.info(f"Starting SEO analysis for blog content")
|
||||
|
||||
# Extract Clerk user ID (required)
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
user_id = str(current_user.get('id', ''))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Invalid user ID in authentication token")
|
||||
|
||||
# Validate request
|
||||
if not request.blog_content or not request.blog_content.strip():
|
||||
raise HTTPException(status_code=400, detail="Blog content is required")
|
||||
|
||||
if not request.research_data:
|
||||
raise HTTPException(status_code=400, detail="Research data is required")
|
||||
|
||||
# Generate analysis ID
|
||||
import uuid
|
||||
analysis_id = str(uuid.uuid4())
|
||||
|
||||
# Perform SEO analysis
|
||||
analysis_results = await seo_analyzer.analyze_blog_content(
|
||||
blog_content=request.blog_content,
|
||||
research_data=request.research_data,
|
||||
blog_title=request.blog_title,
|
||||
user_id=user_id
|
||||
)
|
||||
|
||||
# Check for errors
|
||||
if 'error' in analysis_results:
|
||||
logger.error(f"SEO analysis failed: {analysis_results['error']}")
|
||||
return SEOAnalysisResponse(
|
||||
success=False,
|
||||
analysis_id=analysis_id,
|
||||
overall_score=0,
|
||||
category_scores={},
|
||||
analysis_summary={},
|
||||
actionable_recommendations=[],
|
||||
detailed_analysis=None,
|
||||
visualization_data=None,
|
||||
generated_at=analysis_results.get('generated_at', ''),
|
||||
error=analysis_results['error']
|
||||
)
|
||||
|
||||
# Return successful response
|
||||
return SEOAnalysisResponse(
|
||||
success=True,
|
||||
analysis_id=analysis_id,
|
||||
overall_score=analysis_results.get('overall_score', 0),
|
||||
category_scores=analysis_results.get('category_scores', {}),
|
||||
analysis_summary=analysis_results.get('analysis_summary', {}),
|
||||
actionable_recommendations=analysis_results.get('actionable_recommendations', []),
|
||||
detailed_analysis=analysis_results.get('detailed_analysis'),
|
||||
visualization_data=analysis_results.get('visualization_data'),
|
||||
generated_at=analysis_results.get('generated_at', '')
|
||||
)
|
||||
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"SEO analysis endpoint error: {e}")
|
||||
raise HTTPException(status_code=500, detail=f"SEO analysis failed: {str(e)}")
|
||||
|
||||
|
||||
@router.post("/analyze-with-progress")
|
||||
async def analyze_blog_seo_with_progress(
|
||||
request: SEOAnalysisRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user)
|
||||
):
|
||||
"""
|
||||
Analyze blog content for SEO with real-time progress updates
|
||||
|
||||
This endpoint provides real-time progress updates for CopilotKit integration.
|
||||
It returns a stream of progress updates and final results.
|
||||
|
||||
Args:
|
||||
request: SEOAnalysisRequest containing blog content and research data
|
||||
current_user: Authenticated user from middleware
|
||||
|
||||
Returns:
|
||||
Generator yielding progress updates and final results
|
||||
"""
|
||||
try:
|
||||
logger.info(f"Starting SEO analysis with progress for blog content")
|
||||
|
||||
# Extract Clerk user ID (required)
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
user_id = str(current_user.get('id', ''))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Invalid user ID in authentication token")
|
||||
|
||||
# Validate request
|
||||
if not request.blog_content or not request.blog_content.strip():
|
||||
raise HTTPException(status_code=400, detail="Blog content is required")
|
||||
|
||||
if not request.research_data:
|
||||
raise HTTPException(status_code=400, detail="Research data is required")
|
||||
|
||||
# Generate analysis ID
|
||||
import uuid
|
||||
analysis_id = str(uuid.uuid4())
|
||||
|
||||
# Yield progress updates
|
||||
async def progress_generator():
|
||||
try:
|
||||
# Stage 1: Initialization
|
||||
yield SEOAnalysisProgress(
|
||||
analysis_id=analysis_id,
|
||||
stage="initialization",
|
||||
progress=10,
|
||||
message="Initializing SEO analysis...",
|
||||
timestamp=datetime.utcnow().isoformat()
|
||||
)
|
||||
|
||||
# Stage 2: Keyword extraction
|
||||
yield SEOAnalysisProgress(
|
||||
analysis_id=analysis_id,
|
||||
stage="keyword_extraction",
|
||||
progress=20,
|
||||
message="Extracting keywords from research data...",
|
||||
timestamp=datetime.utcnow().isoformat()
|
||||
)
|
||||
|
||||
# Stage 3: Non-AI analysis
|
||||
yield SEOAnalysisProgress(
|
||||
analysis_id=analysis_id,
|
||||
stage="non_ai_analysis",
|
||||
progress=40,
|
||||
message="Running content structure and readability analysis...",
|
||||
timestamp=datetime.utcnow().isoformat()
|
||||
)
|
||||
|
||||
# Stage 4: AI analysis
|
||||
yield SEOAnalysisProgress(
|
||||
analysis_id=analysis_id,
|
||||
stage="ai_analysis",
|
||||
progress=70,
|
||||
message="Generating AI-powered insights...",
|
||||
timestamp=datetime.utcnow().isoformat()
|
||||
)
|
||||
|
||||
# Stage 5: Results compilation
|
||||
yield SEOAnalysisProgress(
|
||||
analysis_id=analysis_id,
|
||||
stage="compilation",
|
||||
progress=90,
|
||||
message="Compiling analysis results...",
|
||||
timestamp=datetime.utcnow().isoformat()
|
||||
)
|
||||
|
||||
# Perform actual analysis
|
||||
analysis_results = await seo_analyzer.analyze_blog_content(
|
||||
blog_content=request.blog_content,
|
||||
research_data=request.research_data,
|
||||
blog_title=request.blog_title,
|
||||
user_id=user_id
|
||||
)
|
||||
|
||||
# Final result
|
||||
yield SEOAnalysisProgress(
|
||||
analysis_id=analysis_id,
|
||||
stage="completed",
|
||||
progress=100,
|
||||
message="SEO analysis completed successfully!",
|
||||
timestamp=datetime.utcnow().isoformat()
|
||||
)
|
||||
|
||||
# Yield final results (can't return in async generator)
|
||||
yield analysis_results
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Progress generator error: {e}")
|
||||
yield SEOAnalysisProgress(
|
||||
analysis_id=analysis_id,
|
||||
stage="error",
|
||||
progress=0,
|
||||
message=f"Analysis failed: {str(e)}",
|
||||
timestamp=datetime.utcnow().isoformat()
|
||||
)
|
||||
raise
|
||||
|
||||
return progress_generator()
|
||||
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"SEO analysis with progress endpoint error: {e}")
|
||||
raise HTTPException(status_code=500, detail=f"SEO analysis failed: {str(e)}")
|
||||
|
||||
|
||||
@router.get("/analysis/{analysis_id}")
|
||||
async def get_analysis_result(analysis_id: str):
|
||||
"""
|
||||
Get SEO analysis result by ID
|
||||
|
||||
Args:
|
||||
analysis_id: Unique identifier for the analysis
|
||||
|
||||
Returns:
|
||||
SEO analysis results
|
||||
"""
|
||||
try:
|
||||
# In a real implementation, you would store results in a database
|
||||
# For now, we'll return a placeholder
|
||||
logger.info(f"Retrieving SEO analysis result for ID: {analysis_id}")
|
||||
|
||||
return {
|
||||
"analysis_id": analysis_id,
|
||||
"status": "completed",
|
||||
"message": "Analysis results retrieved successfully"
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Get analysis result error: {e}")
|
||||
raise HTTPException(status_code=500, detail=f"Failed to retrieve analysis result: {str(e)}")
|
||||
|
||||
|
||||
@router.get("/health")
|
||||
async def health_check():
|
||||
"""Health check endpoint for SEO analysis service"""
|
||||
return {
|
||||
"status": "healthy",
|
||||
"service": "blog-seo-analysis",
|
||||
"timestamp": datetime.utcnow().isoformat()
|
||||
}
|
||||
|
||||
|
||||
324
backend/api/blog_writer/task_manager.py
Normal file
324
backend/api/blog_writer/task_manager.py
Normal file
@@ -0,0 +1,324 @@
|
||||
"""
|
||||
Task Management System for Blog Writer API
|
||||
|
||||
Handles background task execution, status tracking, and progress updates
|
||||
for research and outline generation operations.
|
||||
Now uses database-backed persistence for reliability and recovery.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List
|
||||
from fastapi import HTTPException
|
||||
from loguru import logger
|
||||
|
||||
from models.blog_models import (
|
||||
BlogResearchRequest,
|
||||
BlogOutlineRequest,
|
||||
MediumBlogGenerateRequest,
|
||||
MediumBlogGenerateResult,
|
||||
)
|
||||
from services.blog_writer.blog_service import BlogWriterService
|
||||
from services.blog_writer.database_task_manager import DatabaseTaskManager
|
||||
from utils.text_asset_tracker import save_and_track_text_content
|
||||
|
||||
|
||||
class TaskManager:
|
||||
"""Manages background tasks for research and outline generation."""
|
||||
|
||||
def __init__(self, db_connection=None):
|
||||
# Fallback to in-memory storage if no database connection
|
||||
if db_connection:
|
||||
self.db_manager = DatabaseTaskManager(db_connection)
|
||||
self.use_database = True
|
||||
else:
|
||||
self.task_storage: Dict[str, Dict[str, Any]] = {}
|
||||
self.service = BlogWriterService()
|
||||
self.use_database = False
|
||||
logger.warning("No database connection provided, using in-memory task storage")
|
||||
|
||||
def cleanup_old_tasks(self):
|
||||
"""Remove tasks older than 1 hour to prevent memory leaks."""
|
||||
current_time = datetime.now()
|
||||
tasks_to_remove = []
|
||||
|
||||
for task_id, task_data in self.task_storage.items():
|
||||
if (current_time - task_data["created_at"]).total_seconds() > 3600: # 1 hour
|
||||
tasks_to_remove.append(task_id)
|
||||
|
||||
for task_id in tasks_to_remove:
|
||||
del self.task_storage[task_id]
|
||||
|
||||
def create_task(self, task_type: str = "general") -> str:
|
||||
"""Create a new task and return its ID."""
|
||||
task_id = str(uuid.uuid4())
|
||||
|
||||
self.task_storage[task_id] = {
|
||||
"status": "pending",
|
||||
"created_at": datetime.now(),
|
||||
"result": None,
|
||||
"error": None,
|
||||
"progress_messages": [],
|
||||
"task_type": task_type
|
||||
}
|
||||
|
||||
return task_id
|
||||
|
||||
async def get_task_status(self, task_id: str) -> Dict[str, Any]:
|
||||
"""Get the status of a task."""
|
||||
if self.use_database:
|
||||
return await self.db_manager.get_task_status(task_id)
|
||||
else:
|
||||
self.cleanup_old_tasks()
|
||||
|
||||
if task_id not in self.task_storage:
|
||||
return None
|
||||
|
||||
task = self.task_storage[task_id]
|
||||
response = {
|
||||
"task_id": task_id,
|
||||
"status": task["status"],
|
||||
"created_at": task["created_at"].isoformat(),
|
||||
"progress_messages": task.get("progress_messages", [])
|
||||
}
|
||||
|
||||
if task["status"] == "completed":
|
||||
response["result"] = task["result"]
|
||||
elif task["status"] == "failed":
|
||||
response["error"] = task["error"]
|
||||
if "error_status" in task:
|
||||
response["error_status"] = task["error_status"]
|
||||
logger.info(f"[TaskManager] get_task_status for {task_id}: Including error_status={task['error_status']} in response")
|
||||
if "error_data" in task:
|
||||
response["error_data"] = task["error_data"]
|
||||
logger.info(f"[TaskManager] get_task_status for {task_id}: Including error_data with keys: {list(task['error_data'].keys()) if isinstance(task['error_data'], dict) else 'not-dict'}")
|
||||
else:
|
||||
logger.warning(f"[TaskManager] get_task_status for {task_id}: Task failed but no error_data found. Task keys: {list(task.keys())}")
|
||||
|
||||
return response
|
||||
|
||||
async def update_progress(self, task_id: str, message: str, percentage: float = None):
|
||||
"""Update progress message for a task."""
|
||||
if self.use_database:
|
||||
await self.db_manager.update_progress(task_id, message, percentage)
|
||||
else:
|
||||
if task_id in self.task_storage:
|
||||
if "progress_messages" not in self.task_storage[task_id]:
|
||||
self.task_storage[task_id]["progress_messages"] = []
|
||||
|
||||
progress_entry = {
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
"message": message
|
||||
}
|
||||
self.task_storage[task_id]["progress_messages"].append(progress_entry)
|
||||
|
||||
# Keep only last 10 progress messages to prevent memory bloat
|
||||
if len(self.task_storage[task_id]["progress_messages"]) > 10:
|
||||
self.task_storage[task_id]["progress_messages"] = self.task_storage[task_id]["progress_messages"][-10:]
|
||||
|
||||
logger.info(f"Progress update for task {task_id}: {message}")
|
||||
|
||||
async def start_research_task(self, request: BlogResearchRequest, user_id: str) -> str:
|
||||
"""Start a research operation and return a task ID."""
|
||||
if self.use_database:
|
||||
return await self.db_manager.start_research_task(request, user_id)
|
||||
else:
|
||||
task_id = self.create_task("research")
|
||||
# Store user_id in task for subscription checks
|
||||
if task_id in self.task_storage:
|
||||
self.task_storage[task_id]["user_id"] = user_id
|
||||
# Start the research operation in the background
|
||||
asyncio.create_task(self._run_research_task(task_id, request, user_id))
|
||||
return task_id
|
||||
|
||||
def start_outline_task(self, request: BlogOutlineRequest, user_id: str) -> str:
|
||||
"""Start an outline generation operation and return a task ID."""
|
||||
task_id = self.create_task("outline")
|
||||
|
||||
# Start the outline generation operation in the background
|
||||
asyncio.create_task(self._run_outline_generation_task(task_id, request, user_id))
|
||||
|
||||
return task_id
|
||||
|
||||
def start_medium_generation_task(self, request: MediumBlogGenerateRequest, user_id: str) -> str:
|
||||
"""Start a medium (≤1000 words) full-blog generation task."""
|
||||
task_id = self.create_task("medium_generation")
|
||||
asyncio.create_task(self._run_medium_generation_task(task_id, request, user_id))
|
||||
return task_id
|
||||
|
||||
def start_content_generation_task(self, request: MediumBlogGenerateRequest, user_id: str) -> str:
|
||||
"""Start content generation (full blog via sections) with provider parity.
|
||||
|
||||
Internally reuses medium generator pipeline for now but tracked under
|
||||
distinct task_type 'content_generation' and same polling contract.
|
||||
|
||||
Args:
|
||||
request: Content generation request
|
||||
user_id: User ID (required for subscription checks and usage tracking)
|
||||
"""
|
||||
task_id = self.create_task("content_generation")
|
||||
asyncio.create_task(self._run_medium_generation_task(task_id, request, user_id))
|
||||
return task_id
|
||||
|
||||
async def _run_research_task(self, task_id: str, request: BlogResearchRequest, user_id: str):
|
||||
"""Background task to run research and update status with progress messages."""
|
||||
try:
|
||||
# Update status to running
|
||||
self.task_storage[task_id]["status"] = "running"
|
||||
self.task_storage[task_id]["progress_messages"] = []
|
||||
|
||||
# Send initial progress message
|
||||
await self.update_progress(task_id, "🔍 Starting research operation...")
|
||||
|
||||
# Check cache first
|
||||
await self.update_progress(task_id, "📋 Checking cache for existing research...")
|
||||
|
||||
# Run the actual research with progress updates (pass user_id for subscription checks)
|
||||
result = await self.service.research_with_progress(request, task_id, user_id)
|
||||
|
||||
# Check if research failed gracefully
|
||||
if not result.success:
|
||||
await self.update_progress(task_id, f"❌ Research failed: {result.error_message or 'Unknown error'}")
|
||||
self.task_storage[task_id]["status"] = "failed"
|
||||
self.task_storage[task_id]["error"] = result.error_message or "Research failed"
|
||||
else:
|
||||
await self.update_progress(task_id, f"✅ Research completed successfully! Found {len(result.sources)} sources and {len(result.search_queries or [])} search queries.")
|
||||
# Update status to completed
|
||||
self.task_storage[task_id]["status"] = "completed"
|
||||
self.task_storage[task_id]["result"] = result.dict()
|
||||
|
||||
except HTTPException as http_error:
|
||||
# Handle HTTPException (e.g., 429 subscription limit) - preserve error details for frontend
|
||||
error_detail = http_error.detail
|
||||
error_message = error_detail.get('message', str(error_detail)) if isinstance(error_detail, dict) else str(error_detail)
|
||||
await self.update_progress(task_id, f"❌ {error_message}")
|
||||
self.task_storage[task_id]["status"] = "failed"
|
||||
self.task_storage[task_id]["error"] = error_message
|
||||
# Store HTTP error details for frontend modal
|
||||
self.task_storage[task_id]["error_status"] = http_error.status_code
|
||||
self.task_storage[task_id]["error_data"] = error_detail if isinstance(error_detail, dict) else {"error": str(error_detail)}
|
||||
except Exception as e:
|
||||
await self.update_progress(task_id, f"❌ Research failed with error: {str(e)}")
|
||||
# Update status to failed
|
||||
self.task_storage[task_id]["status"] = "failed"
|
||||
self.task_storage[task_id]["error"] = str(e)
|
||||
|
||||
# Ensure we always send a final completion message
|
||||
finally:
|
||||
if task_id in self.task_storage:
|
||||
current_status = self.task_storage[task_id]["status"]
|
||||
if current_status not in ["completed", "failed"]:
|
||||
# Force completion if somehow we didn't set a final status
|
||||
await self.update_progress(task_id, "⚠️ Research operation completed with unknown status")
|
||||
self.task_storage[task_id]["status"] = "failed"
|
||||
self.task_storage[task_id]["error"] = "Research completed with unknown status"
|
||||
|
||||
async def _run_outline_generation_task(self, task_id: str, request: BlogOutlineRequest, user_id: str):
|
||||
"""Background task to run outline generation and update status with progress messages."""
|
||||
try:
|
||||
# Update status to running
|
||||
self.task_storage[task_id]["status"] = "running"
|
||||
self.task_storage[task_id]["progress_messages"] = []
|
||||
|
||||
# Send initial progress message
|
||||
await self.update_progress(task_id, "🧩 Starting outline generation...")
|
||||
|
||||
# Run the actual outline generation with progress updates (pass user_id for subscription checks)
|
||||
result = await self.service.generate_outline_with_progress(request, task_id, user_id)
|
||||
|
||||
# Update status to completed
|
||||
await self.update_progress(task_id, f"✅ Outline generated successfully! Created {len(result.outline)} sections with {len(result.title_options)} title options.")
|
||||
self.task_storage[task_id]["status"] = "completed"
|
||||
self.task_storage[task_id]["result"] = result.dict()
|
||||
|
||||
except HTTPException as http_error:
|
||||
# Handle HTTPException (e.g., 429 subscription limit) - preserve error details for frontend
|
||||
error_detail = http_error.detail
|
||||
error_message = error_detail.get('message', str(error_detail)) if isinstance(error_detail, dict) else str(error_detail)
|
||||
await self.update_progress(task_id, f"❌ {error_message}")
|
||||
self.task_storage[task_id]["status"] = "failed"
|
||||
self.task_storage[task_id]["error"] = error_message
|
||||
# Store HTTP error details for frontend modal
|
||||
self.task_storage[task_id]["error_status"] = http_error.status_code
|
||||
self.task_storage[task_id]["error_data"] = error_detail if isinstance(error_detail, dict) else {"error": str(error_detail)}
|
||||
except Exception as e:
|
||||
await self.update_progress(task_id, f"❌ Outline generation failed: {str(e)}")
|
||||
# Update status to failed
|
||||
self.task_storage[task_id]["status"] = "failed"
|
||||
self.task_storage[task_id]["error"] = str(e)
|
||||
|
||||
async def _run_medium_generation_task(self, task_id: str, request: MediumBlogGenerateRequest, user_id: str):
|
||||
"""Background task to generate a medium blog using a single structured JSON call."""
|
||||
try:
|
||||
self.task_storage[task_id]["status"] = "running"
|
||||
self.task_storage[task_id]["progress_messages"] = []
|
||||
|
||||
await self.update_progress(task_id, "📦 Packaging outline and metadata...")
|
||||
|
||||
# Basic guard: respect global target words
|
||||
total_target = int(request.globalTargetWords or 1000)
|
||||
if total_target > 1000:
|
||||
raise ValueError("Global target words exceed 1000; medium generation not allowed")
|
||||
|
||||
result: MediumBlogGenerateResult = await self.service.generate_medium_blog_with_progress(
|
||||
request,
|
||||
task_id,
|
||||
user_id
|
||||
)
|
||||
|
||||
if not result or not getattr(result, "sections", None):
|
||||
raise ValueError("Empty generation result from model")
|
||||
|
||||
# Check if result came from cache
|
||||
cache_hit = getattr(result, 'cache_hit', False)
|
||||
if cache_hit:
|
||||
await self.update_progress(task_id, "⚡ Found cached content - loading instantly!")
|
||||
else:
|
||||
await self.update_progress(task_id, "🤖 Generated fresh content with AI...")
|
||||
await self.update_progress(task_id, "✨ Post-processing and assembling sections...")
|
||||
|
||||
# Mark completed
|
||||
self.task_storage[task_id]["status"] = "completed"
|
||||
self.task_storage[task_id]["result"] = result.dict()
|
||||
await self.update_progress(task_id, f"✅ Generated {len(result.sections)} sections successfully.")
|
||||
|
||||
# Note: Blog content tracking is handled in the status endpoint
|
||||
# to ensure we have proper database session and user context
|
||||
|
||||
except HTTPException as http_error:
|
||||
# Handle HTTPException (e.g., 429 subscription limit) - preserve error details for frontend
|
||||
logger.info(f"[TaskManager] Caught HTTPException in medium generation task {task_id}: status={http_error.status_code}, detail={http_error.detail}")
|
||||
error_detail = http_error.detail
|
||||
error_message = error_detail.get('message', str(error_detail)) if isinstance(error_detail, dict) else str(error_detail)
|
||||
await self.update_progress(task_id, f"❌ {error_message}")
|
||||
self.task_storage[task_id]["status"] = "failed"
|
||||
self.task_storage[task_id]["error"] = error_message
|
||||
# Store HTTP error details for frontend modal
|
||||
self.task_storage[task_id]["error_status"] = http_error.status_code
|
||||
self.task_storage[task_id]["error_data"] = error_detail if isinstance(error_detail, dict) else {"error": str(error_detail)}
|
||||
logger.info(f"[TaskManager] Stored error_status={http_error.status_code} and error_data keys: {list(error_detail.keys()) if isinstance(error_detail, dict) else 'not-dict'}")
|
||||
except Exception as e:
|
||||
# Check if this is an HTTPException that got wrapped (can happen in async tasks)
|
||||
# HTTPException has status_code and detail attributes
|
||||
logger.info(f"[TaskManager] Caught Exception in medium generation task {task_id}: type={type(e).__name__}, has_status_code={hasattr(e, 'status_code')}, has_detail={hasattr(e, 'detail')}")
|
||||
if hasattr(e, 'status_code') and hasattr(e, 'detail'):
|
||||
# This is an HTTPException that was caught as generic Exception
|
||||
logger.info(f"[TaskManager] Detected HTTPException in Exception handler: status={e.status_code}, detail={e.detail}")
|
||||
error_detail = e.detail
|
||||
error_message = error_detail.get('message', str(error_detail)) if isinstance(error_detail, dict) else str(error_detail)
|
||||
await self.update_progress(task_id, f"❌ {error_message}")
|
||||
self.task_storage[task_id]["status"] = "failed"
|
||||
self.task_storage[task_id]["error"] = error_message
|
||||
# Store HTTP error details for frontend modal
|
||||
self.task_storage[task_id]["error_status"] = e.status_code
|
||||
self.task_storage[task_id]["error_data"] = error_detail if isinstance(error_detail, dict) else {"error": str(error_detail)}
|
||||
logger.info(f"[TaskManager] Stored error_status={e.status_code} and error_data keys: {list(error_detail.keys()) if isinstance(error_detail, dict) else 'not-dict'}")
|
||||
else:
|
||||
await self.update_progress(task_id, f"❌ Medium generation failed: {str(e)}")
|
||||
self.task_storage[task_id]["status"] = "failed"
|
||||
self.task_storage[task_id]["error"] = str(e)
|
||||
|
||||
|
||||
# Global task manager instance
|
||||
task_manager = TaskManager()
|
||||
Reference in New Issue
Block a user