Base code
This commit is contained in:
142
backend/api/podcast/handlers/script.py
Normal file
142
backend/api/podcast/handlers/script.py
Normal file
@@ -0,0 +1,142 @@
|
||||
"""
|
||||
Podcast Script Handlers
|
||||
|
||||
Script generation endpoint.
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException
|
||||
from typing import Dict, Any
|
||||
import json
|
||||
|
||||
from middleware.auth_middleware import get_current_user
|
||||
from api.story_writer.utils.auth import require_authenticated_user
|
||||
from services.llm_providers.main_text_generation import llm_text_gen
|
||||
from loguru import logger
|
||||
from ..models import (
|
||||
PodcastScriptRequest,
|
||||
PodcastScriptResponse,
|
||||
PodcastScene,
|
||||
PodcastSceneLine,
|
||||
)
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.post("/script", response_model=PodcastScriptResponse)
|
||||
async def generate_podcast_script(
|
||||
request: PodcastScriptRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user),
|
||||
):
|
||||
"""
|
||||
Generate a podcast script outline (scenes + lines) using podcast-oriented prompting.
|
||||
"""
|
||||
user_id = require_authenticated_user(current_user)
|
||||
|
||||
# Build comprehensive research context for higher-quality scripts
|
||||
research_context = ""
|
||||
if request.research:
|
||||
try:
|
||||
key_insights = request.research.get("keyword_analysis", {}).get("key_insights") or []
|
||||
fact_cards = request.research.get("factCards", []) or []
|
||||
mapped_angles = request.research.get("mappedAngles", []) or []
|
||||
sources = request.research.get("sources", []) or []
|
||||
|
||||
top_facts = [f.get("quote", "") for f in fact_cards[:5] if f.get("quote")]
|
||||
angles_summary = [
|
||||
f"{a.get('title', '')}: {a.get('why', '')}" for a in mapped_angles[:3] if a.get("title") or a.get("why")
|
||||
]
|
||||
top_sources = [s.get("url") for s in sources[:3] if s.get("url")]
|
||||
|
||||
research_parts = []
|
||||
if key_insights:
|
||||
research_parts.append(f"Key Insights: {', '.join(key_insights[:5])}")
|
||||
if top_facts:
|
||||
research_parts.append(f"Key Facts: {', '.join(top_facts)}")
|
||||
if angles_summary:
|
||||
research_parts.append(f"Research Angles: {' | '.join(angles_summary)}")
|
||||
if top_sources:
|
||||
research_parts.append(f"Top Sources: {', '.join(top_sources)}")
|
||||
|
||||
research_context = "\n".join(research_parts)
|
||||
except Exception as exc:
|
||||
logger.warning(f"Failed to parse research context: {exc}")
|
||||
research_context = ""
|
||||
|
||||
prompt = f"""You are an expert podcast script planner. Create natural, conversational podcast scenes.
|
||||
|
||||
Podcast Idea: "{request.idea}"
|
||||
Duration: ~{request.duration_minutes} minutes
|
||||
Speakers: {request.speakers} (Host + optional Guest)
|
||||
|
||||
{f"RESEARCH CONTEXT:\n{research_context}\n" if research_context else ""}
|
||||
|
||||
Return JSON with:
|
||||
- scenes: array of scenes. Each scene has:
|
||||
- id: string
|
||||
- title: short scene title (<= 60 chars)
|
||||
- duration: duration in seconds (evenly split across total duration)
|
||||
- emotion: string (one of: "neutral", "happy", "excited", "serious", "curious", "confident")
|
||||
- lines: array of {{"speaker": "...", "text": "...", "emphasis": boolean}}
|
||||
* Write natural, conversational dialogue
|
||||
* Each line can be a sentence or a few sentences that flow together
|
||||
* Use plain text only - no markdown formatting (no asterisks, underscores, etc.)
|
||||
* Mark "emphasis": true for key statistics or important points
|
||||
|
||||
Guidelines:
|
||||
- Write for spoken delivery: conversational, natural, with contractions
|
||||
- Use research insights naturally - weave statistics into dialogue, don't just list them
|
||||
- Vary emotion per scene based on content
|
||||
- Ensure scenes match target duration: aim for ~2.5 words per second of audio
|
||||
- Keep it engaging and informative, like a real podcast conversation
|
||||
"""
|
||||
|
||||
try:
|
||||
raw = llm_text_gen(prompt=prompt, user_id=user_id, json_struct=None)
|
||||
except Exception as exc:
|
||||
raise HTTPException(status_code=500, detail=f"Script generation failed: {exc}")
|
||||
|
||||
if isinstance(raw, str):
|
||||
try:
|
||||
data = json.loads(raw)
|
||||
except json.JSONDecodeError:
|
||||
raise HTTPException(status_code=500, detail="LLM returned non-JSON output")
|
||||
elif isinstance(raw, dict):
|
||||
data = raw
|
||||
else:
|
||||
raise HTTPException(status_code=500, detail="Unexpected LLM response format")
|
||||
|
||||
scenes_data = data.get("scenes") or []
|
||||
if not isinstance(scenes_data, list):
|
||||
raise HTTPException(status_code=500, detail="LLM response missing scenes array")
|
||||
|
||||
valid_emotions = {"neutral", "happy", "excited", "serious", "curious", "confident"}
|
||||
|
||||
# Normalize scenes
|
||||
scenes: list[PodcastScene] = []
|
||||
for idx, scene in enumerate(scenes_data):
|
||||
title = scene.get("title") or f"Scene {idx + 1}"
|
||||
duration = int(scene.get("duration") or max(30, (request.duration_minutes * 60) // max(1, len(scenes_data))))
|
||||
emotion = scene.get("emotion") or "neutral"
|
||||
if emotion not in valid_emotions:
|
||||
emotion = "neutral"
|
||||
lines_raw = scene.get("lines") or []
|
||||
lines: list[PodcastSceneLine] = []
|
||||
for line in lines_raw:
|
||||
speaker = line.get("speaker") or ("Host" if len(lines) % request.speakers == 0 else "Guest")
|
||||
text = line.get("text") or ""
|
||||
emphasis = line.get("emphasis", False)
|
||||
if text:
|
||||
lines.append(PodcastSceneLine(speaker=speaker, text=text, emphasis=emphasis))
|
||||
scenes.append(
|
||||
PodcastScene(
|
||||
id=scene.get("id") or f"scene-{idx + 1}",
|
||||
title=title,
|
||||
duration=duration,
|
||||
lines=lines,
|
||||
approved=False,
|
||||
emotion=emotion,
|
||||
)
|
||||
)
|
||||
|
||||
return PodcastScriptResponse(scenes=scenes)
|
||||
|
||||
Reference in New Issue
Block a user