Base code
This commit is contained in:
739
backend/api/research/router.py
Normal file
739
backend/api/research/router.py
Normal file
@@ -0,0 +1,739 @@
|
||||
"""
|
||||
Research API Router
|
||||
|
||||
Standalone API endpoints for the Research Engine.
|
||||
These endpoints can be used by:
|
||||
- Frontend Research UI
|
||||
- Blog Writer (via adapter)
|
||||
- Podcast Maker
|
||||
- YouTube Creator
|
||||
- Any other content tool
|
||||
|
||||
Author: ALwrity Team
|
||||
Version: 2.0
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException, BackgroundTasks
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional, List, Dict, Any
|
||||
from loguru import logger
|
||||
import uuid
|
||||
import asyncio
|
||||
|
||||
from services.database import get_db
|
||||
from services.research.core import (
|
||||
ResearchEngine,
|
||||
ResearchContext,
|
||||
ResearchPersonalizationContext,
|
||||
ContentType,
|
||||
ResearchGoal,
|
||||
ResearchDepth,
|
||||
ProviderPreference,
|
||||
)
|
||||
from services.research.core.research_context import ResearchResult
|
||||
from middleware.auth_middleware import get_current_user
|
||||
|
||||
# Intent-driven research imports
|
||||
from models.research_intent_models import (
|
||||
ResearchIntent,
|
||||
IntentInferenceRequest,
|
||||
IntentInferenceResponse,
|
||||
IntentDrivenResearchResult,
|
||||
ResearchQuery,
|
||||
ExpectedDeliverable,
|
||||
ResearchPurpose,
|
||||
ContentOutput,
|
||||
ResearchDepthLevel,
|
||||
)
|
||||
from services.research.intent import (
|
||||
ResearchIntentInference,
|
||||
IntentQueryGenerator,
|
||||
IntentAwareAnalyzer,
|
||||
)
|
||||
|
||||
router = APIRouter(prefix="/api/research", tags=["Research Engine"])
|
||||
|
||||
|
||||
# Request/Response models
|
||||
class ResearchRequest(BaseModel):
|
||||
"""API request for research."""
|
||||
query: str = Field(..., description="Main research query or topic")
|
||||
keywords: List[str] = Field(default_factory=list, description="Additional keywords")
|
||||
|
||||
# Research configuration
|
||||
goal: Optional[str] = Field(default="factual", description="Research goal: factual, trending, competitive, etc.")
|
||||
depth: Optional[str] = Field(default="standard", description="Research depth: quick, standard, comprehensive, expert")
|
||||
provider: Optional[str] = Field(default="auto", description="Provider preference: auto, exa, tavily, google")
|
||||
|
||||
# Personalization
|
||||
content_type: Optional[str] = Field(default="general", description="Content type: blog, podcast, video, etc.")
|
||||
industry: Optional[str] = None
|
||||
target_audience: Optional[str] = None
|
||||
tone: Optional[str] = None
|
||||
|
||||
# Constraints
|
||||
max_sources: int = Field(default=10, ge=1, le=25)
|
||||
recency: Optional[str] = None # day, week, month, year
|
||||
|
||||
# Domain filtering
|
||||
include_domains: List[str] = Field(default_factory=list)
|
||||
exclude_domains: List[str] = Field(default_factory=list)
|
||||
|
||||
# Advanced mode
|
||||
advanced_mode: bool = False
|
||||
|
||||
# Raw provider parameters (only if advanced_mode=True)
|
||||
exa_category: Optional[str] = None
|
||||
exa_search_type: Optional[str] = None
|
||||
tavily_topic: Optional[str] = None
|
||||
tavily_search_depth: Optional[str] = None
|
||||
tavily_include_answer: bool = False
|
||||
tavily_time_range: Optional[str] = None
|
||||
|
||||
|
||||
class ResearchResponse(BaseModel):
|
||||
"""API response for research."""
|
||||
success: bool
|
||||
task_id: Optional[str] = None # For async requests
|
||||
|
||||
# Results (if synchronous)
|
||||
sources: List[Dict[str, Any]] = Field(default_factory=list)
|
||||
keyword_analysis: Dict[str, Any] = Field(default_factory=dict)
|
||||
competitor_analysis: Dict[str, Any] = Field(default_factory=dict)
|
||||
suggested_angles: List[str] = Field(default_factory=list)
|
||||
|
||||
# Metadata
|
||||
provider_used: Optional[str] = None
|
||||
search_queries: List[str] = Field(default_factory=list)
|
||||
|
||||
# Error handling
|
||||
error_message: Optional[str] = None
|
||||
error_code: Optional[str] = None
|
||||
|
||||
|
||||
class ProviderStatusResponse(BaseModel):
|
||||
"""API response for provider status."""
|
||||
exa: Dict[str, Any]
|
||||
tavily: Dict[str, Any]
|
||||
google: Dict[str, Any]
|
||||
|
||||
|
||||
# In-memory task storage for async research
|
||||
_research_tasks: Dict[str, Dict[str, Any]] = {}
|
||||
|
||||
|
||||
def _convert_to_research_context(request: ResearchRequest, user_id: str) -> ResearchContext:
|
||||
"""Convert API request to ResearchContext."""
|
||||
|
||||
# Map string enums
|
||||
goal_map = {
|
||||
"factual": ResearchGoal.FACTUAL,
|
||||
"trending": ResearchGoal.TRENDING,
|
||||
"competitive": ResearchGoal.COMPETITIVE,
|
||||
"educational": ResearchGoal.EDUCATIONAL,
|
||||
"technical": ResearchGoal.TECHNICAL,
|
||||
"inspirational": ResearchGoal.INSPIRATIONAL,
|
||||
}
|
||||
|
||||
depth_map = {
|
||||
"quick": ResearchDepth.QUICK,
|
||||
"standard": ResearchDepth.STANDARD,
|
||||
"comprehensive": ResearchDepth.COMPREHENSIVE,
|
||||
"expert": ResearchDepth.EXPERT,
|
||||
}
|
||||
|
||||
provider_map = {
|
||||
"auto": ProviderPreference.AUTO,
|
||||
"exa": ProviderPreference.EXA,
|
||||
"tavily": ProviderPreference.TAVILY,
|
||||
"google": ProviderPreference.GOOGLE,
|
||||
"hybrid": ProviderPreference.HYBRID,
|
||||
}
|
||||
|
||||
content_type_map = {
|
||||
"blog": ContentType.BLOG,
|
||||
"podcast": ContentType.PODCAST,
|
||||
"video": ContentType.VIDEO,
|
||||
"social": ContentType.SOCIAL,
|
||||
"email": ContentType.EMAIL,
|
||||
"newsletter": ContentType.NEWSLETTER,
|
||||
"whitepaper": ContentType.WHITEPAPER,
|
||||
"general": ContentType.GENERAL,
|
||||
}
|
||||
|
||||
# Build personalization context
|
||||
personalization = ResearchPersonalizationContext(
|
||||
creator_id=user_id,
|
||||
content_type=content_type_map.get(request.content_type or "general", ContentType.GENERAL),
|
||||
industry=request.industry,
|
||||
target_audience=request.target_audience,
|
||||
tone=request.tone,
|
||||
)
|
||||
|
||||
return ResearchContext(
|
||||
query=request.query,
|
||||
keywords=request.keywords,
|
||||
goal=goal_map.get(request.goal or "factual", ResearchGoal.FACTUAL),
|
||||
depth=depth_map.get(request.depth or "standard", ResearchDepth.STANDARD),
|
||||
provider_preference=provider_map.get(request.provider or "auto", ProviderPreference.AUTO),
|
||||
personalization=personalization,
|
||||
max_sources=request.max_sources,
|
||||
recency=request.recency,
|
||||
include_domains=request.include_domains,
|
||||
exclude_domains=request.exclude_domains,
|
||||
advanced_mode=request.advanced_mode,
|
||||
exa_category=request.exa_category,
|
||||
exa_search_type=request.exa_search_type,
|
||||
tavily_topic=request.tavily_topic,
|
||||
tavily_search_depth=request.tavily_search_depth,
|
||||
tavily_include_answer=request.tavily_include_answer,
|
||||
tavily_time_range=request.tavily_time_range,
|
||||
)
|
||||
|
||||
|
||||
@router.get("/providers/status", response_model=ProviderStatusResponse)
|
||||
async def get_provider_status():
|
||||
"""
|
||||
Get status of available research providers.
|
||||
|
||||
Returns availability and priority of Exa, Tavily, and Google providers.
|
||||
"""
|
||||
engine = ResearchEngine()
|
||||
return engine.get_provider_status()
|
||||
|
||||
|
||||
@router.post("/execute", response_model=ResearchResponse)
|
||||
async def execute_research(
|
||||
request: ResearchRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user),
|
||||
):
|
||||
"""
|
||||
Execute research synchronously.
|
||||
|
||||
For quick research needs. For longer research, use /start endpoint.
|
||||
"""
|
||||
try:
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
user_id = str(current_user.get('id', ''))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Invalid user ID in authentication token")
|
||||
|
||||
logger.info(f"[Research API] Execute request: {request.query[:50]}...")
|
||||
|
||||
engine = ResearchEngine()
|
||||
context = _convert_to_research_context(request, user_id)
|
||||
|
||||
result = await engine.research(context)
|
||||
|
||||
return ResearchResponse(
|
||||
success=result.success,
|
||||
sources=result.sources,
|
||||
keyword_analysis=result.keyword_analysis,
|
||||
competitor_analysis=result.competitor_analysis,
|
||||
suggested_angles=result.suggested_angles,
|
||||
provider_used=result.provider_used,
|
||||
search_queries=result.search_queries,
|
||||
error_message=result.error_message,
|
||||
error_code=result.error_code,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[Research API] Execute failed: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.post("/start", response_model=ResearchResponse)
|
||||
async def start_research(
|
||||
request: ResearchRequest,
|
||||
background_tasks: BackgroundTasks,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user),
|
||||
):
|
||||
"""
|
||||
Start research asynchronously.
|
||||
|
||||
Returns a task_id that can be used to poll for status.
|
||||
Use this for comprehensive research that may take longer.
|
||||
"""
|
||||
try:
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
user_id = str(current_user.get('id', ''))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Invalid user ID in authentication token")
|
||||
|
||||
logger.info(f"[Research API] Start async request: {request.query[:50]}...")
|
||||
|
||||
task_id = str(uuid.uuid4())
|
||||
|
||||
# Initialize task
|
||||
_research_tasks[task_id] = {
|
||||
"status": "pending",
|
||||
"progress_messages": [],
|
||||
"result": None,
|
||||
"error": None,
|
||||
}
|
||||
|
||||
# Start background task
|
||||
context = _convert_to_research_context(request, user_id)
|
||||
background_tasks.add_task(_run_research_task, task_id, context)
|
||||
|
||||
return ResearchResponse(
|
||||
success=True,
|
||||
task_id=task_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[Research API] Start failed: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
async def _run_research_task(task_id: str, context: ResearchContext):
|
||||
"""Background task to run research."""
|
||||
try:
|
||||
_research_tasks[task_id]["status"] = "running"
|
||||
|
||||
def progress_callback(message: str):
|
||||
_research_tasks[task_id]["progress_messages"].append(message)
|
||||
|
||||
engine = ResearchEngine()
|
||||
result = await engine.research(context, progress_callback=progress_callback)
|
||||
|
||||
_research_tasks[task_id]["status"] = "completed"
|
||||
_research_tasks[task_id]["result"] = result
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[Research API] Task {task_id} failed: {e}")
|
||||
_research_tasks[task_id]["status"] = "failed"
|
||||
_research_tasks[task_id]["error"] = str(e)
|
||||
|
||||
|
||||
@router.get("/status/{task_id}")
|
||||
async def get_research_status(task_id: str):
|
||||
"""
|
||||
Get status of an async research task.
|
||||
|
||||
Poll this endpoint to get progress updates and final results.
|
||||
"""
|
||||
if task_id not in _research_tasks:
|
||||
raise HTTPException(status_code=404, detail="Task not found")
|
||||
|
||||
task = _research_tasks[task_id]
|
||||
|
||||
response = {
|
||||
"task_id": task_id,
|
||||
"status": task["status"],
|
||||
"progress_messages": task["progress_messages"],
|
||||
}
|
||||
|
||||
if task["status"] == "completed" and task["result"]:
|
||||
result = task["result"]
|
||||
response["result"] = {
|
||||
"success": result.success,
|
||||
"sources": result.sources,
|
||||
"keyword_analysis": result.keyword_analysis,
|
||||
"competitor_analysis": result.competitor_analysis,
|
||||
"suggested_angles": result.suggested_angles,
|
||||
"provider_used": result.provider_used,
|
||||
"search_queries": result.search_queries,
|
||||
}
|
||||
|
||||
# Clean up completed task after returning
|
||||
# In production, use Redis or database for persistence
|
||||
|
||||
elif task["status"] == "failed":
|
||||
response["error"] = task["error"]
|
||||
|
||||
return response
|
||||
|
||||
|
||||
@router.delete("/status/{task_id}")
|
||||
async def cancel_research(task_id: str):
|
||||
"""
|
||||
Cancel a running research task.
|
||||
"""
|
||||
if task_id not in _research_tasks:
|
||||
raise HTTPException(status_code=404, detail="Task not found")
|
||||
|
||||
task = _research_tasks[task_id]
|
||||
|
||||
if task["status"] in ["pending", "running"]:
|
||||
task["status"] = "cancelled"
|
||||
return {"message": "Task cancelled", "task_id": task_id}
|
||||
|
||||
return {"message": f"Task already {task['status']}", "task_id": task_id}
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Intent-Driven Research Endpoints
|
||||
# ============================================================================
|
||||
|
||||
class AnalyzeIntentRequest(BaseModel):
|
||||
"""Request to analyze user research intent."""
|
||||
user_input: str = Field(..., description="User's keywords, question, or goal")
|
||||
keywords: List[str] = Field(default_factory=list, description="Extracted keywords")
|
||||
use_persona: bool = Field(True, description="Use research persona for context")
|
||||
use_competitor_data: bool = Field(True, description="Use competitor data for context")
|
||||
|
||||
|
||||
class AnalyzeIntentResponse(BaseModel):
|
||||
"""Response from intent analysis."""
|
||||
success: bool
|
||||
intent: Dict[str, Any]
|
||||
analysis_summary: str
|
||||
suggested_queries: List[Dict[str, Any]]
|
||||
suggested_keywords: List[str]
|
||||
suggested_angles: List[str]
|
||||
quick_options: List[Dict[str, Any]]
|
||||
error_message: Optional[str] = None
|
||||
|
||||
|
||||
class IntentDrivenResearchRequest(BaseModel):
|
||||
"""Request for intent-driven research."""
|
||||
# Intent from previous analyze step, or minimal input for auto-inference
|
||||
user_input: str = Field(..., description="User's original input")
|
||||
|
||||
# Optional: Confirmed intent from UI (if user modified the inferred intent)
|
||||
confirmed_intent: Optional[Dict[str, Any]] = None
|
||||
|
||||
# Optional: Specific queries to run (if user selected from suggested)
|
||||
selected_queries: Optional[List[Dict[str, Any]]] = None
|
||||
|
||||
# Research configuration
|
||||
max_sources: int = Field(default=10, ge=1, le=25)
|
||||
include_domains: List[str] = Field(default_factory=list)
|
||||
exclude_domains: List[str] = Field(default_factory=list)
|
||||
|
||||
# Skip intent inference (for re-runs with same intent)
|
||||
skip_inference: bool = False
|
||||
|
||||
|
||||
class IntentDrivenResearchResponse(BaseModel):
|
||||
"""Response from intent-driven research."""
|
||||
success: bool
|
||||
|
||||
# Direct answers
|
||||
primary_answer: str = ""
|
||||
secondary_answers: Dict[str, str] = Field(default_factory=dict)
|
||||
|
||||
# Deliverables
|
||||
statistics: List[Dict[str, Any]] = Field(default_factory=list)
|
||||
expert_quotes: List[Dict[str, Any]] = Field(default_factory=list)
|
||||
case_studies: List[Dict[str, Any]] = Field(default_factory=list)
|
||||
trends: List[Dict[str, Any]] = Field(default_factory=list)
|
||||
comparisons: List[Dict[str, Any]] = Field(default_factory=list)
|
||||
best_practices: List[str] = Field(default_factory=list)
|
||||
step_by_step: List[str] = Field(default_factory=list)
|
||||
pros_cons: Optional[Dict[str, Any]] = None
|
||||
definitions: Dict[str, str] = Field(default_factory=dict)
|
||||
examples: List[str] = Field(default_factory=list)
|
||||
predictions: List[str] = Field(default_factory=list)
|
||||
|
||||
# Content-ready outputs
|
||||
executive_summary: str = ""
|
||||
key_takeaways: List[str] = Field(default_factory=list)
|
||||
suggested_outline: List[str] = Field(default_factory=list)
|
||||
|
||||
# Sources and metadata
|
||||
sources: List[Dict[str, Any]] = Field(default_factory=list)
|
||||
confidence: float = 0.8
|
||||
gaps_identified: List[str] = Field(default_factory=list)
|
||||
follow_up_queries: List[str] = Field(default_factory=list)
|
||||
|
||||
# The inferred/confirmed intent
|
||||
intent: Optional[Dict[str, Any]] = None
|
||||
|
||||
# Error handling
|
||||
error_message: Optional[str] = None
|
||||
|
||||
|
||||
@router.post("/intent/analyze", response_model=AnalyzeIntentResponse)
|
||||
async def analyze_research_intent(
|
||||
request: AnalyzeIntentRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user),
|
||||
):
|
||||
"""
|
||||
Analyze user input to understand research intent.
|
||||
|
||||
This endpoint uses AI to infer what the user really wants from their research:
|
||||
- What questions need answering
|
||||
- What deliverables they expect (statistics, quotes, case studies, etc.)
|
||||
- What depth and focus is appropriate
|
||||
|
||||
The response includes quick options that can be shown in the UI for user confirmation.
|
||||
"""
|
||||
try:
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
user_id = str(current_user.get('id', ''))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Invalid user ID")
|
||||
|
||||
logger.info(f"[Intent API] Analyzing intent for: {request.user_input[:50]}...")
|
||||
|
||||
# Get research persona if requested
|
||||
research_persona = None
|
||||
competitor_data = None
|
||||
|
||||
if request.use_persona or request.use_competitor_data:
|
||||
from services.research.research_persona_service import ResearchPersonaService
|
||||
from services.onboarding_service import OnboardingService
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
# Get database session
|
||||
db = next(get_db())
|
||||
try:
|
||||
persona_service = ResearchPersonaService(db)
|
||||
onboarding_service = OnboardingService()
|
||||
|
||||
if request.use_persona:
|
||||
research_persona = persona_service.get_or_generate(user_id)
|
||||
|
||||
if request.use_competitor_data:
|
||||
competitor_data = onboarding_service.get_competitor_analysis(user_id, db)
|
||||
finally:
|
||||
db.close()
|
||||
|
||||
# Infer intent
|
||||
intent_service = ResearchIntentInference()
|
||||
response = await intent_service.infer_intent(
|
||||
user_input=request.user_input,
|
||||
keywords=request.keywords,
|
||||
research_persona=research_persona,
|
||||
competitor_data=competitor_data,
|
||||
industry=research_persona.default_industry if research_persona else None,
|
||||
target_audience=research_persona.default_target_audience if research_persona else None,
|
||||
)
|
||||
|
||||
# Generate targeted queries
|
||||
query_generator = IntentQueryGenerator()
|
||||
query_result = await query_generator.generate_queries(
|
||||
intent=response.intent,
|
||||
research_persona=research_persona,
|
||||
)
|
||||
|
||||
# Update response with queries
|
||||
response.suggested_queries = [q.dict() for q in query_result.get("queries", [])]
|
||||
response.suggested_keywords = query_result.get("enhanced_keywords", [])
|
||||
response.suggested_angles = query_result.get("research_angles", [])
|
||||
|
||||
return AnalyzeIntentResponse(
|
||||
success=True,
|
||||
intent=response.intent.dict(),
|
||||
analysis_summary=response.analysis_summary,
|
||||
suggested_queries=response.suggested_queries,
|
||||
suggested_keywords=response.suggested_keywords,
|
||||
suggested_angles=response.suggested_angles,
|
||||
quick_options=response.quick_options,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[Intent API] Analyze failed: {e}")
|
||||
return AnalyzeIntentResponse(
|
||||
success=False,
|
||||
intent={},
|
||||
analysis_summary="",
|
||||
suggested_queries=[],
|
||||
suggested_keywords=[],
|
||||
suggested_angles=[],
|
||||
quick_options=[],
|
||||
error_message=str(e),
|
||||
)
|
||||
|
||||
|
||||
@router.post("/intent/research", response_model=IntentDrivenResearchResponse)
|
||||
async def execute_intent_driven_research(
|
||||
request: IntentDrivenResearchRequest,
|
||||
current_user: Dict[str, Any] = Depends(get_current_user),
|
||||
):
|
||||
"""
|
||||
Execute research based on user intent.
|
||||
|
||||
This is the main endpoint for intent-driven research. It:
|
||||
1. Uses the confirmed intent (or infers from user_input if not provided)
|
||||
2. Generates targeted queries for each expected deliverable
|
||||
3. Executes research using Exa/Tavily/Google
|
||||
4. Analyzes results through the lens of user intent
|
||||
5. Returns exactly what the user needs
|
||||
|
||||
The response is organized by deliverable type (statistics, quotes, case studies, etc.)
|
||||
instead of generic search results.
|
||||
"""
|
||||
try:
|
||||
if not current_user:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
user_id = str(current_user.get('id', ''))
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Invalid user ID")
|
||||
|
||||
logger.info(f"[Intent API] Executing intent-driven research for: {request.user_input[:50]}...")
|
||||
|
||||
# Get database session
|
||||
db = next(get_db())
|
||||
|
||||
try:
|
||||
# Get research persona
|
||||
from services.research.research_persona_service import ResearchPersonaService
|
||||
persona_service = ResearchPersonaService(db)
|
||||
research_persona = persona_service.get_or_generate(user_id)
|
||||
|
||||
# Determine intent
|
||||
if request.confirmed_intent:
|
||||
# Use confirmed intent from UI
|
||||
intent = ResearchIntent(**request.confirmed_intent)
|
||||
elif not request.skip_inference:
|
||||
# Infer intent from user input
|
||||
intent_service = ResearchIntentInference()
|
||||
intent_response = await intent_service.infer_intent(
|
||||
user_input=request.user_input,
|
||||
research_persona=research_persona,
|
||||
)
|
||||
intent = intent_response.intent
|
||||
else:
|
||||
# Create basic intent from input
|
||||
intent = ResearchIntent(
|
||||
primary_question=f"What are the key insights about: {request.user_input}?",
|
||||
purpose="learn",
|
||||
content_output="general",
|
||||
expected_deliverables=["key_statistics", "best_practices", "examples"],
|
||||
depth="detailed",
|
||||
original_input=request.user_input,
|
||||
confidence=0.6,
|
||||
)
|
||||
|
||||
# Generate or use provided queries
|
||||
if request.selected_queries:
|
||||
queries = [ResearchQuery(**q) for q in request.selected_queries]
|
||||
else:
|
||||
query_generator = IntentQueryGenerator()
|
||||
query_result = await query_generator.generate_queries(
|
||||
intent=intent,
|
||||
research_persona=research_persona,
|
||||
)
|
||||
queries = query_result.get("queries", [])
|
||||
|
||||
# Execute research using the Research Engine
|
||||
engine = ResearchEngine(db_session=db)
|
||||
|
||||
# Build context from intent
|
||||
personalization = ResearchPersonalizationContext(
|
||||
creator_id=user_id,
|
||||
industry=research_persona.default_industry if research_persona else None,
|
||||
target_audience=research_persona.default_target_audience if research_persona else None,
|
||||
)
|
||||
|
||||
# Use the highest priority query for the main search
|
||||
# (In a more advanced version, we could run multiple queries and merge)
|
||||
primary_query = queries[0] if queries else ResearchQuery(
|
||||
query=request.user_input,
|
||||
purpose=ExpectedDeliverable.KEY_STATISTICS,
|
||||
provider="exa",
|
||||
priority=5,
|
||||
expected_results="General research results",
|
||||
)
|
||||
|
||||
context = ResearchContext(
|
||||
query=primary_query.query,
|
||||
keywords=request.user_input.split()[:10],
|
||||
goal=_map_purpose_to_goal(intent.purpose),
|
||||
depth=_map_depth_to_engine_depth(intent.depth),
|
||||
provider_preference=_map_provider_to_preference(primary_query.provider),
|
||||
personalization=personalization,
|
||||
max_sources=request.max_sources,
|
||||
include_domains=request.include_domains,
|
||||
exclude_domains=request.exclude_domains,
|
||||
)
|
||||
|
||||
# Execute research
|
||||
raw_result = await engine.research(context)
|
||||
|
||||
# Analyze results using intent-aware analyzer
|
||||
analyzer = IntentAwareAnalyzer()
|
||||
analyzed_result = await analyzer.analyze(
|
||||
raw_results={
|
||||
"content": raw_result.raw_content or "",
|
||||
"sources": raw_result.sources,
|
||||
"grounding_metadata": raw_result.grounding_metadata,
|
||||
},
|
||||
intent=intent,
|
||||
research_persona=research_persona,
|
||||
)
|
||||
|
||||
# Build response
|
||||
return IntentDrivenResearchResponse(
|
||||
success=True,
|
||||
primary_answer=analyzed_result.primary_answer,
|
||||
secondary_answers=analyzed_result.secondary_answers,
|
||||
statistics=[s.dict() for s in analyzed_result.statistics],
|
||||
expert_quotes=[q.dict() for q in analyzed_result.expert_quotes],
|
||||
case_studies=[cs.dict() for cs in analyzed_result.case_studies],
|
||||
trends=[t.dict() for t in analyzed_result.trends],
|
||||
comparisons=[c.dict() for c in analyzed_result.comparisons],
|
||||
best_practices=analyzed_result.best_practices,
|
||||
step_by_step=analyzed_result.step_by_step,
|
||||
pros_cons=analyzed_result.pros_cons.dict() if analyzed_result.pros_cons else None,
|
||||
definitions=analyzed_result.definitions,
|
||||
examples=analyzed_result.examples,
|
||||
predictions=analyzed_result.predictions,
|
||||
executive_summary=analyzed_result.executive_summary,
|
||||
key_takeaways=analyzed_result.key_takeaways,
|
||||
suggested_outline=analyzed_result.suggested_outline,
|
||||
sources=[s.dict() for s in analyzed_result.sources],
|
||||
confidence=analyzed_result.confidence,
|
||||
gaps_identified=analyzed_result.gaps_identified,
|
||||
follow_up_queries=analyzed_result.follow_up_queries,
|
||||
intent=intent.dict(),
|
||||
)
|
||||
|
||||
finally:
|
||||
db.close()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[Intent API] Research failed: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return IntentDrivenResearchResponse(
|
||||
success=False,
|
||||
error_message=str(e),
|
||||
)
|
||||
|
||||
|
||||
def _map_purpose_to_goal(purpose: str) -> ResearchGoal:
|
||||
"""Map intent purpose to research goal."""
|
||||
mapping = {
|
||||
"learn": ResearchGoal.EDUCATIONAL,
|
||||
"create_content": ResearchGoal.FACTUAL,
|
||||
"make_decision": ResearchGoal.FACTUAL,
|
||||
"compare": ResearchGoal.COMPETITIVE,
|
||||
"solve_problem": ResearchGoal.EDUCATIONAL,
|
||||
"find_data": ResearchGoal.FACTUAL,
|
||||
"explore_trends": ResearchGoal.TRENDING,
|
||||
"validate": ResearchGoal.FACTUAL,
|
||||
"generate_ideas": ResearchGoal.INSPIRATIONAL,
|
||||
}
|
||||
return mapping.get(purpose, ResearchGoal.FACTUAL)
|
||||
|
||||
|
||||
def _map_depth_to_engine_depth(depth: str) -> ResearchDepth:
|
||||
"""Map intent depth to research engine depth."""
|
||||
mapping = {
|
||||
"overview": ResearchDepth.QUICK,
|
||||
"detailed": ResearchDepth.STANDARD,
|
||||
"expert": ResearchDepth.COMPREHENSIVE,
|
||||
}
|
||||
return mapping.get(depth, ResearchDepth.STANDARD)
|
||||
|
||||
|
||||
def _map_provider_to_preference(provider: str) -> ProviderPreference:
|
||||
"""Map query provider to engine preference."""
|
||||
mapping = {
|
||||
"exa": ProviderPreference.EXA,
|
||||
"tavily": ProviderPreference.TAVILY,
|
||||
"google": ProviderPreference.GOOGLE,
|
||||
}
|
||||
return mapping.get(provider, ProviderPreference.AUTO)
|
||||
|
||||
Reference in New Issue
Block a user