Base code

This commit is contained in:
Kunthawat Greethong
2026-01-08 22:39:53 +07:00
parent 697115c61a
commit c35fa52117
2169 changed files with 626670 additions and 0 deletions

View File

@@ -0,0 +1,454 @@
"""
LinkedIn Content Generation Models for ALwrity
This module defines the data models for LinkedIn content generation endpoints.
Enhanced to support grounding capabilities with source integration and quality metrics.
"""
from pydantic import BaseModel, Field, validator
from typing import List, Optional, Dict, Any, Literal
from datetime import datetime
from enum import Enum
class LinkedInPostType(str, Enum):
"""Types of LinkedIn posts."""
PROFESSIONAL = "professional"
THOUGHT_LEADERSHIP = "thought_leadership"
INDUSTRY_NEWS = "industry_news"
PERSONAL_STORY = "personal_story"
COMPANY_UPDATE = "company_update"
POLL = "poll"
class LinkedInTone(str, Enum):
"""LinkedIn content tone options."""
PROFESSIONAL = "professional"
CONVERSATIONAL = "conversational"
AUTHORITATIVE = "authoritative"
INSPIRATIONAL = "inspirational"
EDUCATIONAL = "educational"
FRIENDLY = "friendly"
class SearchEngine(str, Enum):
"""Available search engines for research."""
METAPHOR = "metaphor"
GOOGLE = "google"
TAVILY = "tavily"
class GroundingLevel(str, Enum):
"""Levels of content grounding."""
NONE = "none"
BASIC = "basic"
ENHANCED = "enhanced"
ENTERPRISE = "enterprise"
class LinkedInPostRequest(BaseModel):
"""Request model for LinkedIn post generation."""
topic: str = Field(..., description="Main topic for the post", min_length=3, max_length=200)
industry: str = Field(..., description="Target industry context", min_length=2, max_length=100)
post_type: LinkedInPostType = Field(default=LinkedInPostType.PROFESSIONAL, description="Type of LinkedIn post")
tone: LinkedInTone = Field(default=LinkedInTone.PROFESSIONAL, description="Tone of the post")
target_audience: Optional[str] = Field(None, description="Specific target audience", max_length=200)
key_points: Optional[List[str]] = Field(None, description="Key points to include", max_items=10)
include_hashtags: bool = Field(default=True, description="Whether to include hashtags")
include_call_to_action: bool = Field(default=True, description="Whether to include call to action")
research_enabled: bool = Field(default=True, description="Whether to include research-backed content")
search_engine: SearchEngine = Field(default=SearchEngine.GOOGLE, description="Search engine for research")
max_length: int = Field(default=3000, description="Maximum character count", ge=100, le=3000)
grounding_level: GroundingLevel = Field(default=GroundingLevel.ENHANCED, description="Level of content grounding")
include_citations: bool = Field(default=True, description="Whether to include inline citations")
user_id: Optional[int] = Field(default=1, description="User id for persona lookup")
persona_override: Optional[Dict[str, Any]] = Field(default=None, description="Session-only persona overrides to apply without saving")
class Config:
json_schema_extra = {
"example": {
"topic": "AI in healthcare transformation",
"industry": "Healthcare",
"post_type": "thought_leadership",
"tone": "professional",
"target_audience": "Healthcare executives and professionals",
"key_points": ["AI diagnostics", "Patient outcomes", "Cost reduction"],
"include_hashtags": True,
"include_call_to_action": True,
"research_enabled": True,
"search_engine": "google",
"max_length": 2000,
"grounding_level": "enhanced",
"include_citations": True
}
}
class LinkedInArticleRequest(BaseModel):
"""Request model for LinkedIn article generation."""
topic: str = Field(..., description="Main topic for the article", min_length=3, max_length=200)
industry: str = Field(..., description="Target industry context", min_length=2, max_length=100)
tone: LinkedInTone = Field(default=LinkedInTone.PROFESSIONAL, description="Tone of the article")
target_audience: Optional[str] = Field(None, description="Specific target audience", max_length=200)
key_sections: Optional[List[str]] = Field(None, description="Key sections to include", max_items=10)
include_images: bool = Field(default=True, description="Whether to generate image suggestions")
seo_optimization: bool = Field(default=True, description="Whether to include SEO optimization")
research_enabled: bool = Field(default=True, description="Whether to include research-backed content")
search_engine: SearchEngine = Field(default=SearchEngine.GOOGLE, description="Search engine for research")
word_count: int = Field(default=1500, description="Target word count", ge=500, le=5000)
grounding_level: GroundingLevel = Field(default=GroundingLevel.ENHANCED, description="Level of content grounding")
include_citations: bool = Field(default=True, description="Whether to include inline citations")
user_id: Optional[int] = Field(default=1, description="User id for persona lookup")
persona_override: Optional[Dict[str, Any]] = Field(default=None, description="Session-only persona overrides to apply without saving")
class Config:
json_schema_extra = {
"example": {
"topic": "Digital transformation in manufacturing",
"industry": "Manufacturing",
"tone": "professional",
"target_audience": "Manufacturing leaders and technology professionals",
"key_sections": ["Current challenges", "Technology solutions", "Implementation strategies"],
"include_images": True,
"seo_optimization": True,
"research_enabled": True,
"search_engine": "google",
"word_count": 2000,
"grounding_level": "enhanced",
"include_citations": True
}
}
class LinkedInCarouselRequest(BaseModel):
"""Request model for LinkedIn carousel generation."""
topic: str = Field(..., description="Main topic for the carousel", min_length=3, max_length=200)
industry: str = Field(..., description="Target industry context", min_length=2, max_length=100)
tone: LinkedInTone = Field(default=LinkedInTone.PROFESSIONAL, description="Tone of the carousel")
target_audience: Optional[str] = Field(None, description="Specific target audience", max_length=200)
number_of_slides: int = Field(default=5, description="Number of slides", ge=3, le=10)
include_cover_slide: bool = Field(default=True, description="Whether to include a cover slide")
include_cta_slide: bool = Field(default=True, description="Whether to include a call-to-action slide")
research_enabled: bool = Field(default=True, description="Whether to include research-backed content")
search_engine: SearchEngine = Field(default=SearchEngine.GOOGLE, description="Search engine for research")
grounding_level: GroundingLevel = Field(default=GroundingLevel.ENHANCED, description="Level of content grounding")
include_citations: bool = Field(default=True, description="Whether to include inline citations")
class Config:
json_schema_extra = {
"example": {
"topic": "Future of remote work",
"industry": "Technology",
"tone": "professional",
"target_audience": "HR professionals and business leaders",
"number_of_slides": 6,
"include_cover_slide": True,
"include_cta_slide": True,
"research_enabled": True,
"search_engine": "google",
"grounding_level": "enhanced",
"include_citations": True
}
}
class LinkedInVideoScriptRequest(BaseModel):
"""Request model for LinkedIn video script generation."""
topic: str = Field(..., description="Main topic for the video script", min_length=3, max_length=200)
industry: str = Field(..., description="Target industry context", min_length=2, max_length=100)
tone: LinkedInTone = Field(default=LinkedInTone.PROFESSIONAL, description="Tone of the video script")
target_audience: Optional[str] = Field(None, description="Specific target audience", max_length=200)
video_duration: int = Field(default=60, description="Target video duration in seconds", ge=30, le=300)
include_captions: bool = Field(default=True, description="Whether to include captions")
include_thumbnail_suggestions: bool = Field(default=True, description="Whether to include thumbnail suggestions")
research_enabled: bool = Field(default=True, description="Whether to include research-backed content")
search_engine: SearchEngine = Field(default=SearchEngine.GOOGLE, description="Search engine for research")
grounding_level: GroundingLevel = Field(default=GroundingLevel.ENHANCED, description="Level of content grounding")
include_citations: bool = Field(default=True, description="Whether to include inline citations")
class Config:
json_schema_extra = {
"example": {
"topic": "Cybersecurity best practices",
"industry": "Technology",
"tone": "educational",
"target_audience": "IT professionals and business leaders",
"video_duration": 90,
"include_captions": True,
"include_thumbnail_suggestions": True,
"research_enabled": True,
"search_engine": "google",
"grounding_level": "enhanced",
"include_citations": True
}
}
class LinkedInCommentResponseRequest(BaseModel):
"""Request model for LinkedIn comment response generation."""
original_comment: str = Field(..., description="Original comment to respond to", min_length=10, max_length=1000)
post_context: str = Field(..., description="Context of the post being commented on", min_length=10, max_length=500)
industry: str = Field(..., description="Industry context", min_length=2, max_length=100)
tone: LinkedInTone = Field(default=LinkedInTone.FRIENDLY, description="Tone of the response")
response_length: str = Field(default="medium", description="Length of response: short, medium, long")
include_questions: bool = Field(default=True, description="Whether to include engaging questions")
research_enabled: bool = Field(default=False, description="Whether to include research-backed content")
search_engine: SearchEngine = Field(default=SearchEngine.GOOGLE, description="Search engine for research")
grounding_level: GroundingLevel = Field(default=GroundingLevel.BASIC, description="Level of content grounding")
class Config:
json_schema_extra = {
"example": {
"original_comment": "Great insights on AI implementation!",
"post_context": "Post about AI transformation in healthcare",
"industry": "Healthcare",
"tone": "friendly",
"response_length": "medium",
"include_questions": True,
"research_enabled": False,
"search_engine": "google",
"grounding_level": "basic"
}
}
# Enhanced Research Source Model
class ResearchSource(BaseModel):
"""Enhanced model for research source information with grounding capabilities."""
title: str
url: str
content: str
relevance_score: Optional[float] = Field(None, description="Relevance score (0.0-1.0)")
credibility_score: Optional[float] = Field(None, description="Credibility score (0.0-1.0)")
domain_authority: Optional[float] = Field(None, description="Domain authority score (0.0-1.0)")
source_type: Optional[str] = Field(None, description="Type of source (academic, business_news, etc.)")
publication_date: Optional[str] = Field(None, description="Publication date if available")
raw_result: Optional[Dict[str, Any]] = Field(None, description="Raw search result data")
# Enhanced Hashtag Suggestion Model
class HashtagSuggestion(BaseModel):
"""Enhanced model for hashtag suggestions."""
hashtag: str
category: str
popularity_score: Optional[float] = Field(None, description="Popularity score (0.0-1.0)")
relevance_score: Optional[float] = Field(None, description="Relevance to topic (0.0-1.0)")
industry_alignment: Optional[float] = Field(None, description="Industry alignment score (0.0-1.0)")
# Enhanced Image Suggestion Model
class ImageSuggestion(BaseModel):
"""Enhanced model for image suggestions."""
description: str
alt_text: str
style: Optional[str] = Field(None, description="Visual style description")
placement: Optional[str] = Field(None, description="Suggested placement in content")
relevance_score: Optional[float] = Field(None, description="Relevance to content (0.0-1.0)")
# New Quality Metrics Model
class ContentQualityMetrics(BaseModel):
"""Model for content quality assessment metrics."""
overall_score: float = Field(..., description="Overall quality score (0.0-1.0)")
factual_accuracy: float = Field(..., description="Factual accuracy score (0.0-1.0)")
source_verification: float = Field(..., description="Source verification score (0.0-1.0)")
professional_tone: float = Field(..., description="Professional tone score (0.0-1.0)")
industry_relevance: float = Field(..., description="Industry relevance score (0.0-1.0)")
citation_coverage: float = Field(..., description="Citation coverage score (0.0-1.0)")
content_length: int = Field(..., description="Content length in characters")
word_count: int = Field(..., description="Word count")
analysis_timestamp: str = Field(..., description="Timestamp of quality analysis")
recommendations: Optional[List[str]] = Field(default_factory=list, description="List of improvement recommendations")
# New Citation Model
class Citation(BaseModel):
"""Model for inline citations in content."""
type: str = Field(..., description="Type of citation (inline, footnote, etc.)")
reference: str = Field(..., description="Citation reference (e.g., 'Source 1')")
position: Optional[int] = Field(None, description="Position in content")
source_index: Optional[int] = Field(None, description="Index of source in research_sources")
# Enhanced Post Content Model
class PostContent(BaseModel):
"""Enhanced model for generated post content with grounding capabilities."""
content: str
character_count: int
hashtags: List[HashtagSuggestion]
call_to_action: Optional[str] = None
engagement_prediction: Optional[Dict[str, Any]] = None
citations: List[Citation] = Field(default_factory=list, description="Inline citations")
source_list: Optional[str] = Field(None, description="Formatted source list")
quality_metrics: Optional[ContentQualityMetrics] = Field(None, description="Content quality metrics")
grounding_enabled: bool = Field(default=False, description="Whether grounding was used")
search_queries: Optional[List[str]] = Field(default_factory=list, description="Search queries used for research")
# Enhanced Article Content Model
class ArticleContent(BaseModel):
"""Enhanced model for generated article content with grounding capabilities."""
title: str
content: str
word_count: int
sections: List[Dict[str, str]]
seo_metadata: Optional[Dict[str, Any]] = None
image_suggestions: List[ImageSuggestion]
reading_time: Optional[int] = None
citations: List[Citation] = Field(default_factory=list, description="Inline citations")
source_list: Optional[str] = Field(None, description="Formatted source list")
quality_metrics: Optional[ContentQualityMetrics] = Field(None, description="Content quality metrics")
grounding_enabled: bool = Field(default=False, description="Whether grounding was used")
search_queries: Optional[List[str]] = Field(default_factory=list, description="Search queries used for research")
# Enhanced Carousel Slide Model
class CarouselSlide(BaseModel):
"""Enhanced model for carousel slide content."""
slide_number: int
title: str
content: str
visual_elements: List[str]
design_notes: Optional[str] = None
citations: List[Citation] = Field(default_factory=list, description="Inline citations for this slide")
# Enhanced Carousel Content Model
class CarouselContent(BaseModel):
"""Enhanced model for generated carousel content with grounding capabilities."""
title: str
slides: List[CarouselSlide]
cover_slide: Optional[CarouselSlide] = None
cta_slide: Optional[CarouselSlide] = None
design_guidelines: Dict[str, str]
citations: List[Citation] = Field(default_factory=list, description="Overall citations")
source_list: Optional[str] = Field(None, description="Formatted source list")
quality_metrics: Optional[ContentQualityMetrics] = Field(None, description="Content quality metrics")
grounding_enabled: bool = Field(default=False, description="Whether grounding was used")
# Enhanced Video Script Model
class VideoScript(BaseModel):
"""Enhanced model for video script content with grounding capabilities."""
hook: str
main_content: List[Dict[str, str]] # scene_number, content, duration, visual_notes
conclusion: str
captions: Optional[List[str]] = None
thumbnail_suggestions: List[str]
video_description: str
citations: List[Citation] = Field(default_factory=list, description="Inline citations")
source_list: Optional[str] = Field(None, description="Formatted source list")
quality_metrics: Optional[ContentQualityMetrics] = Field(None, description="Content quality metrics")
grounding_enabled: bool = Field(default=False, description="Whether grounding was used")
# Enhanced LinkedIn Post Response Model
class LinkedInPostResponse(BaseModel):
"""Enhanced response model for LinkedIn post generation with grounding capabilities."""
success: bool = True
data: Optional[PostContent] = None
research_sources: List[ResearchSource] = []
generation_metadata: Dict[str, Any] = {}
error: Optional[str] = None
grounding_status: Optional[Dict[str, Any]] = Field(None, description="Grounding operation status")
class Config:
json_schema_extra = {
"example": {
"success": True,
"data": {
"content": "🚀 AI is revolutionizing healthcare...",
"character_count": 1250,
"hashtags": [
{"hashtag": "#AIinHealthcare", "category": "industry", "popularity_score": 0.9},
{"hashtag": "#DigitalTransformation", "category": "general", "popularity_score": 0.8}
],
"call_to_action": "What's your experience with AI in healthcare? Share in the comments!",
"engagement_prediction": {"estimated_likes": 120, "estimated_comments": 15},
"citations": [
{"type": "inline", "reference": "Source 1", "position": 45}
],
"source_list": "**Sources:**\n1. **AI in Healthcare: Current Trends**\n - URL: [https://example.com/ai-healthcare](https://example.com/ai-healthcare)",
"quality_metrics": {
"overall_score": 0.85,
"factual_accuracy": 0.9,
"source_verification": 0.8,
"professional_tone": 0.9,
"industry_relevance": 0.85,
"citation_coverage": 0.8,
"content_length": 1250,
"word_count": 180,
"analysis_timestamp": "2025-01-15T10:30:00Z"
},
"grounding_enabled": True
},
"research_sources": [
{
"title": "AI in Healthcare: Current Trends",
"url": "https://example.com/ai-healthcare",
"content": "Summary of AI healthcare trends...",
"relevance_score": 0.95,
"credibility_score": 0.85,
"domain_authority": 0.9,
"source_type": "business_news"
}
],
"generation_metadata": {
"model_used": "gemini-2.0-flash-001",
"generation_time": 3.2,
"research_time": 5.1,
"grounding_enabled": True
},
"grounding_status": {
"status": "success",
"sources_used": 3,
"citation_coverage": 0.8,
"quality_score": 0.85
}
}
}
# Enhanced LinkedIn Article Response Model
class LinkedInArticleResponse(BaseModel):
"""Enhanced response model for LinkedIn article generation with grounding capabilities."""
success: bool = True
data: Optional[ArticleContent] = None
research_sources: List[ResearchSource] = []
generation_metadata: Dict[str, Any] = {}
error: Optional[str] = None
grounding_status: Optional[Dict[str, Any]] = Field(None, description="Grounding operation status")
# Enhanced LinkedIn Carousel Response Model
class LinkedInCarouselResponse(BaseModel):
"""Enhanced response model for LinkedIn carousel generation with grounding capabilities."""
success: bool = True
data: Optional[CarouselContent] = None
research_sources: List[ResearchSource] = []
generation_metadata: Dict[str, Any] = {}
error: Optional[str] = None
grounding_status: Optional[Dict[str, Any]] = Field(None, description="Grounding operation status")
# Enhanced LinkedIn Video Script Response Model
class LinkedInVideoScriptResponse(BaseModel):
"""Enhanced response model for LinkedIn video script generation with grounding capabilities."""
success: bool = True
data: Optional[VideoScript] = None
research_sources: List[ResearchSource] = []
generation_metadata: Dict[str, Any] = {}
error: Optional[str] = None
grounding_status: Optional[Dict[str, Any]] = Field(None, description="Grounding operation status")
# Enhanced LinkedIn Comment Response Result Model
class LinkedInCommentResponseResult(BaseModel):
"""Enhanced response model for LinkedIn comment response generation with grounding capabilities."""
success: bool = True
response: Optional[str] = None
alternative_responses: List[str] = []
tone_analysis: Optional[Dict[str, Any]] = None
generation_metadata: Dict[str, Any] = {}
error: Optional[str] = None
grounding_status: Optional[Dict[str, Any]] = Field(None, description="Grounding operation status")