Base code
This commit is contained in:
1
backend/services/cache/__init__.py
vendored
Normal file
1
backend/services/cache/__init__.py
vendored
Normal file
@@ -0,0 +1 @@
|
||||
# Cache services for AI Blog Writer
|
||||
363
backend/services/cache/persistent_content_cache.py
vendored
Normal file
363
backend/services/cache/persistent_content_cache.py
vendored
Normal file
@@ -0,0 +1,363 @@
|
||||
"""
|
||||
Persistent Content Cache Service
|
||||
|
||||
Provides database-backed caching for blog content generation results to survive server restarts
|
||||
and provide better cache management across multiple instances.
|
||||
"""
|
||||
|
||||
import hashlib
|
||||
import json
|
||||
import sqlite3
|
||||
from typing import Dict, Any, Optional, List
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from loguru import logger
|
||||
|
||||
|
||||
class PersistentContentCache:
|
||||
"""Database-backed cache for blog content generation results with exact parameter matching."""
|
||||
|
||||
def __init__(self, db_path: str = "content_cache.db", max_cache_size: int = 300, cache_ttl_hours: int = 72):
|
||||
"""
|
||||
Initialize the persistent content cache.
|
||||
|
||||
Args:
|
||||
db_path: Path to SQLite database file
|
||||
max_cache_size: Maximum number of cached entries
|
||||
cache_ttl_hours: Time-to-live for cache entries in hours (longer than research cache since content is expensive)
|
||||
"""
|
||||
self.db_path = db_path
|
||||
self.max_cache_size = max_cache_size
|
||||
self.cache_ttl = timedelta(hours=cache_ttl_hours)
|
||||
|
||||
# Ensure database directory exists
|
||||
Path(db_path).parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Initialize database
|
||||
self._init_database()
|
||||
|
||||
def _init_database(self):
|
||||
"""Initialize the SQLite database with required tables."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("""
|
||||
CREATE TABLE IF NOT EXISTS content_cache (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
cache_key TEXT UNIQUE NOT NULL,
|
||||
title TEXT NOT NULL,
|
||||
sections_hash TEXT NOT NULL,
|
||||
global_target_words INTEGER NOT NULL,
|
||||
persona_data TEXT,
|
||||
tone TEXT,
|
||||
audience TEXT,
|
||||
result_data TEXT NOT NULL,
|
||||
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
expires_at TIMESTAMP NOT NULL,
|
||||
access_count INTEGER DEFAULT 0,
|
||||
last_accessed TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
||||
)
|
||||
""")
|
||||
|
||||
# Create indexes for better performance
|
||||
conn.execute("CREATE INDEX IF NOT EXISTS idx_content_cache_key ON content_cache(cache_key)")
|
||||
conn.execute("CREATE INDEX IF NOT EXISTS idx_content_expires_at ON content_cache(expires_at)")
|
||||
conn.execute("CREATE INDEX IF NOT EXISTS idx_content_created_at ON content_cache(created_at)")
|
||||
conn.execute("CREATE INDEX IF NOT EXISTS idx_content_title ON content_cache(title)")
|
||||
|
||||
conn.commit()
|
||||
|
||||
def _generate_sections_hash(self, sections: List[Dict[str, Any]]) -> str:
|
||||
"""
|
||||
Generate a hash for sections based on their structure and content.
|
||||
|
||||
Args:
|
||||
sections: List of section dictionaries with outline information
|
||||
|
||||
Returns:
|
||||
MD5 hash of the normalized sections
|
||||
"""
|
||||
# Normalize sections for consistent hashing
|
||||
normalized_sections = []
|
||||
for section in sections:
|
||||
normalized_section = {
|
||||
'id': section.get('id', ''),
|
||||
'heading': section.get('heading', '').lower().strip(),
|
||||
'keyPoints': sorted([str(kp).lower().strip() for kp in section.get('keyPoints', [])]),
|
||||
'keywords': sorted([str(kw).lower().strip() for kw in section.get('keywords', [])]),
|
||||
'subheadings': sorted([str(sh).lower().strip() for sh in section.get('subheadings', [])]),
|
||||
'targetWords': section.get('targetWords', 0),
|
||||
# Don't include references in hash as they might vary but content should remain similar
|
||||
}
|
||||
normalized_sections.append(normalized_section)
|
||||
|
||||
# Sort sections by id for consistent ordering
|
||||
normalized_sections.sort(key=lambda x: x['id'])
|
||||
|
||||
# Generate hash
|
||||
sections_str = json.dumps(normalized_sections, sort_keys=True)
|
||||
return hashlib.md5(sections_str.encode('utf-8')).hexdigest()
|
||||
|
||||
def _generate_cache_key(self, keywords: List[str], sections: List[Dict[str, Any]],
|
||||
global_target_words: int, persona_data: Dict = None,
|
||||
tone: str = None, audience: str = None) -> str:
|
||||
"""
|
||||
Generate a cache key based on exact parameter match.
|
||||
|
||||
Args:
|
||||
keywords: Original research keywords (primary cache key)
|
||||
sections: List of section dictionaries with outline information
|
||||
global_target_words: Target word count for entire blog
|
||||
persona_data: Persona information
|
||||
tone: Content tone
|
||||
audience: Target audience
|
||||
|
||||
Returns:
|
||||
MD5 hash of the normalized parameters
|
||||
"""
|
||||
# Normalize parameters
|
||||
normalized_keywords = sorted([kw.lower().strip() for kw in (keywords or [])])
|
||||
sections_hash = self._generate_sections_hash(sections)
|
||||
normalized_tone = tone.lower().strip() if tone else "professional"
|
||||
normalized_audience = audience.lower().strip() if audience else "general"
|
||||
|
||||
# Normalize persona data
|
||||
normalized_persona = ""
|
||||
if persona_data:
|
||||
# Sort persona keys and values for consistent hashing
|
||||
persona_str = json.dumps(persona_data, sort_keys=True, default=str)
|
||||
normalized_persona = persona_str.lower()
|
||||
|
||||
# Create a consistent string representation
|
||||
cache_string = f"{normalized_keywords}|{sections_hash}|{global_target_words}|{normalized_tone}|{normalized_audience}|{normalized_persona}"
|
||||
|
||||
# Generate MD5 hash
|
||||
return hashlib.md5(cache_string.encode('utf-8')).hexdigest()
|
||||
|
||||
def _cleanup_expired_entries(self):
|
||||
"""Remove expired cache entries from database."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute(
|
||||
"DELETE FROM content_cache WHERE expires_at < ?",
|
||||
(datetime.now().isoformat(),)
|
||||
)
|
||||
deleted_count = cursor.rowcount
|
||||
if deleted_count > 0:
|
||||
logger.debug(f"Removed {deleted_count} expired content cache entries")
|
||||
conn.commit()
|
||||
|
||||
def _evict_oldest_entries(self, num_to_evict: int):
|
||||
"""Evict the oldest cache entries when cache is full."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
# Get oldest entries by creation time
|
||||
cursor = conn.execute("""
|
||||
SELECT id FROM content_cache
|
||||
ORDER BY created_at ASC
|
||||
LIMIT ?
|
||||
""", (num_to_evict,))
|
||||
|
||||
old_ids = [row[0] for row in cursor.fetchall()]
|
||||
|
||||
if old_ids:
|
||||
placeholders = ','.join(['?' for _ in old_ids])
|
||||
conn.execute(f"DELETE FROM content_cache WHERE id IN ({placeholders})", old_ids)
|
||||
logger.debug(f"Evicted {len(old_ids)} oldest content cache entries")
|
||||
|
||||
conn.commit()
|
||||
|
||||
def get_cached_content(self, keywords: List[str], sections: List[Dict[str, Any]],
|
||||
global_target_words: int, persona_data: Dict = None,
|
||||
tone: str = None, audience: str = None) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Get cached content result for exact parameter match.
|
||||
|
||||
Args:
|
||||
keywords: Original research keywords (primary cache key)
|
||||
sections: List of section dictionaries with outline information
|
||||
global_target_words: Target word count for entire blog
|
||||
persona_data: Persona information
|
||||
tone: Content tone
|
||||
audience: Target audience
|
||||
|
||||
Returns:
|
||||
Cached content result if found and valid, None otherwise
|
||||
"""
|
||||
cache_key = self._generate_cache_key(keywords, sections, global_target_words, persona_data, tone, audience)
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("""
|
||||
SELECT result_data, expires_at FROM content_cache
|
||||
WHERE cache_key = ? AND expires_at > ?
|
||||
""", (cache_key, datetime.now().isoformat()))
|
||||
|
||||
row = cursor.fetchone()
|
||||
|
||||
if row is None:
|
||||
logger.debug(f"Content cache miss for keywords: {keywords}, sections: {len(sections)}")
|
||||
return None
|
||||
|
||||
# Update access statistics
|
||||
conn.execute("""
|
||||
UPDATE content_cache
|
||||
SET access_count = access_count + 1, last_accessed = CURRENT_TIMESTAMP
|
||||
WHERE cache_key = ?
|
||||
""", (cache_key,))
|
||||
conn.commit()
|
||||
|
||||
try:
|
||||
result_data = json.loads(row[0])
|
||||
logger.info(f"Content cache hit for keywords: {keywords} (saved expensive generation)")
|
||||
return result_data
|
||||
except json.JSONDecodeError:
|
||||
logger.error(f"Invalid JSON in content cache for keywords: {keywords}")
|
||||
# Remove invalid entry
|
||||
conn.execute("DELETE FROM content_cache WHERE cache_key = ?", (cache_key,))
|
||||
conn.commit()
|
||||
return None
|
||||
|
||||
def cache_content(self, keywords: List[str], sections: List[Dict[str, Any]],
|
||||
global_target_words: int, persona_data: Dict, tone: str,
|
||||
audience: str, result: Dict[str, Any]):
|
||||
"""
|
||||
Cache a content generation result.
|
||||
|
||||
Args:
|
||||
keywords: Original research keywords (primary cache key)
|
||||
sections: List of section dictionaries with outline information
|
||||
global_target_words: Target word count for entire blog
|
||||
persona_data: Persona information
|
||||
tone: Content tone
|
||||
audience: Target audience
|
||||
result: Content result to cache
|
||||
"""
|
||||
cache_key = self._generate_cache_key(keywords, sections, global_target_words, persona_data, tone, audience)
|
||||
sections_hash = self._generate_sections_hash(sections)
|
||||
|
||||
# Cleanup expired entries first
|
||||
self._cleanup_expired_entries()
|
||||
|
||||
# Check if cache is full and evict if necessary
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("SELECT COUNT(*) FROM content_cache")
|
||||
current_count = cursor.fetchone()[0]
|
||||
|
||||
if current_count >= self.max_cache_size:
|
||||
num_to_evict = current_count - self.max_cache_size + 1
|
||||
self._evict_oldest_entries(num_to_evict)
|
||||
|
||||
# Store the result
|
||||
expires_at = datetime.now() + self.cache_ttl
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("""
|
||||
INSERT OR REPLACE INTO content_cache
|
||||
(cache_key, title, sections_hash, global_target_words, persona_data, tone, audience, result_data, expires_at)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||
""", (
|
||||
cache_key,
|
||||
json.dumps(keywords), # Store keywords as JSON
|
||||
sections_hash,
|
||||
global_target_words,
|
||||
json.dumps(persona_data) if persona_data else "",
|
||||
tone or "",
|
||||
audience or "",
|
||||
json.dumps(result),
|
||||
expires_at.isoformat()
|
||||
))
|
||||
conn.commit()
|
||||
|
||||
logger.info(f"Cached content result for keywords: {keywords}, {len(sections)} sections")
|
||||
|
||||
def get_cache_stats(self) -> Dict[str, Any]:
|
||||
"""Get cache statistics."""
|
||||
self._cleanup_expired_entries()
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
# Get basic stats
|
||||
cursor = conn.execute("SELECT COUNT(*) FROM content_cache")
|
||||
total_entries = cursor.fetchone()[0]
|
||||
|
||||
cursor = conn.execute("SELECT COUNT(*) FROM content_cache WHERE expires_at > ?", (datetime.now().isoformat(),))
|
||||
valid_entries = cursor.fetchone()[0]
|
||||
|
||||
# Get most accessed entries
|
||||
cursor = conn.execute("""
|
||||
SELECT title, global_target_words, access_count, created_at
|
||||
FROM content_cache
|
||||
ORDER BY access_count DESC
|
||||
LIMIT 10
|
||||
""")
|
||||
top_entries = [
|
||||
{
|
||||
'title': row[0],
|
||||
'global_target_words': row[1],
|
||||
'access_count': row[2],
|
||||
'created_at': row[3]
|
||||
}
|
||||
for row in cursor.fetchall()
|
||||
]
|
||||
|
||||
# Get database size
|
||||
cursor = conn.execute("SELECT page_count * page_size as size FROM pragma_page_count(), pragma_page_size()")
|
||||
db_size_bytes = cursor.fetchone()[0]
|
||||
db_size_mb = db_size_bytes / (1024 * 1024)
|
||||
|
||||
return {
|
||||
'total_entries': total_entries,
|
||||
'valid_entries': valid_entries,
|
||||
'expired_entries': total_entries - valid_entries,
|
||||
'max_size': self.max_cache_size,
|
||||
'ttl_hours': self.cache_ttl.total_seconds() / 3600,
|
||||
'database_size_mb': round(db_size_mb, 2),
|
||||
'top_accessed_entries': top_entries
|
||||
}
|
||||
|
||||
def clear_cache(self):
|
||||
"""Clear all cached entries."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("DELETE FROM content_cache")
|
||||
conn.commit()
|
||||
logger.info("Content cache cleared")
|
||||
|
||||
def get_cache_entries(self, limit: int = 50) -> List[Dict[str, Any]]:
|
||||
"""Get recent cache entries for debugging."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("""
|
||||
SELECT title, global_target_words, tone, audience, created_at, expires_at, access_count
|
||||
FROM content_cache
|
||||
ORDER BY created_at DESC
|
||||
LIMIT ?
|
||||
""", (limit,))
|
||||
|
||||
return [
|
||||
{
|
||||
'title': row[0],
|
||||
'global_target_words': row[1],
|
||||
'tone': row[2],
|
||||
'audience': row[3],
|
||||
'created_at': row[4],
|
||||
'expires_at': row[5],
|
||||
'access_count': row[6]
|
||||
}
|
||||
for row in cursor.fetchall()
|
||||
]
|
||||
|
||||
def invalidate_cache_for_title(self, title: str):
|
||||
"""
|
||||
Invalidate all cache entries for specific title.
|
||||
Useful when outline is updated.
|
||||
|
||||
Args:
|
||||
title: Title to invalidate cache for
|
||||
"""
|
||||
normalized_title = title.lower().strip()
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("DELETE FROM content_cache WHERE LOWER(title) = ?", (normalized_title,))
|
||||
deleted_count = cursor.rowcount
|
||||
conn.commit()
|
||||
|
||||
if deleted_count > 0:
|
||||
logger.info(f"Invalidated {deleted_count} content cache entries for title: {title}")
|
||||
|
||||
|
||||
# Global persistent cache instance
|
||||
persistent_content_cache = PersistentContentCache()
|
||||
332
backend/services/cache/persistent_outline_cache.py
vendored
Normal file
332
backend/services/cache/persistent_outline_cache.py
vendored
Normal file
@@ -0,0 +1,332 @@
|
||||
"""
|
||||
Persistent Outline Cache Service
|
||||
|
||||
Provides database-backed caching for outline generation results to survive server restarts
|
||||
and provide better cache management across multiple instances.
|
||||
"""
|
||||
|
||||
import hashlib
|
||||
import json
|
||||
import sqlite3
|
||||
from typing import Dict, Any, Optional, List
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from loguru import logger
|
||||
|
||||
|
||||
class PersistentOutlineCache:
|
||||
"""Database-backed cache for outline generation results with exact parameter matching."""
|
||||
|
||||
def __init__(self, db_path: str = "outline_cache.db", max_cache_size: int = 500, cache_ttl_hours: int = 48):
|
||||
"""
|
||||
Initialize the persistent outline cache.
|
||||
|
||||
Args:
|
||||
db_path: Path to SQLite database file
|
||||
max_cache_size: Maximum number of cached entries
|
||||
cache_ttl_hours: Time-to-live for cache entries in hours (longer than research cache)
|
||||
"""
|
||||
self.db_path = db_path
|
||||
self.max_cache_size = max_cache_size
|
||||
self.cache_ttl = timedelta(hours=cache_ttl_hours)
|
||||
|
||||
# Ensure database directory exists
|
||||
Path(db_path).parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Initialize database
|
||||
self._init_database()
|
||||
|
||||
def _init_database(self):
|
||||
"""Initialize the SQLite database with required tables."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("""
|
||||
CREATE TABLE IF NOT EXISTS outline_cache (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
cache_key TEXT UNIQUE NOT NULL,
|
||||
keywords TEXT NOT NULL,
|
||||
industry TEXT NOT NULL,
|
||||
target_audience TEXT NOT NULL,
|
||||
word_count INTEGER NOT NULL,
|
||||
custom_instructions TEXT,
|
||||
persona_data TEXT,
|
||||
result_data TEXT NOT NULL,
|
||||
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
expires_at TIMESTAMP NOT NULL,
|
||||
access_count INTEGER DEFAULT 0,
|
||||
last_accessed TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
||||
)
|
||||
""")
|
||||
|
||||
# Create indexes for better performance
|
||||
conn.execute("CREATE INDEX IF NOT EXISTS idx_outline_cache_key ON outline_cache(cache_key)")
|
||||
conn.execute("CREATE INDEX IF NOT EXISTS idx_outline_expires_at ON outline_cache(expires_at)")
|
||||
conn.execute("CREATE INDEX IF NOT EXISTS idx_outline_created_at ON outline_cache(created_at)")
|
||||
conn.execute("CREATE INDEX IF NOT EXISTS idx_outline_keywords ON outline_cache(keywords)")
|
||||
|
||||
conn.commit()
|
||||
|
||||
def _generate_cache_key(self, keywords: List[str], industry: str, target_audience: str,
|
||||
word_count: int, custom_instructions: str = None, persona_data: Dict = None) -> str:
|
||||
"""
|
||||
Generate a cache key based on exact parameter match.
|
||||
|
||||
Args:
|
||||
keywords: List of research keywords
|
||||
industry: Industry context
|
||||
target_audience: Target audience context
|
||||
word_count: Target word count for outline
|
||||
custom_instructions: Custom instructions for outline generation
|
||||
persona_data: Persona information
|
||||
|
||||
Returns:
|
||||
MD5 hash of the normalized parameters
|
||||
"""
|
||||
# Normalize and sort keywords for consistent hashing
|
||||
normalized_keywords = sorted([kw.lower().strip() for kw in keywords])
|
||||
normalized_industry = industry.lower().strip() if industry else "general"
|
||||
normalized_audience = target_audience.lower().strip() if target_audience else "general"
|
||||
normalized_instructions = custom_instructions.lower().strip() if custom_instructions else ""
|
||||
|
||||
# Normalize persona data
|
||||
normalized_persona = ""
|
||||
if persona_data:
|
||||
# Sort persona keys and values for consistent hashing
|
||||
persona_str = json.dumps(persona_data, sort_keys=True, default=str)
|
||||
normalized_persona = persona_str.lower()
|
||||
|
||||
# Create a consistent string representation
|
||||
cache_string = f"{normalized_keywords}|{normalized_industry}|{normalized_audience}|{word_count}|{normalized_instructions}|{normalized_persona}"
|
||||
|
||||
# Generate MD5 hash
|
||||
return hashlib.md5(cache_string.encode('utf-8')).hexdigest()
|
||||
|
||||
def _cleanup_expired_entries(self):
|
||||
"""Remove expired cache entries from database."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute(
|
||||
"DELETE FROM outline_cache WHERE expires_at < ?",
|
||||
(datetime.now().isoformat(),)
|
||||
)
|
||||
deleted_count = cursor.rowcount
|
||||
if deleted_count > 0:
|
||||
logger.debug(f"Removed {deleted_count} expired outline cache entries")
|
||||
conn.commit()
|
||||
|
||||
def _evict_oldest_entries(self, num_to_evict: int):
|
||||
"""Evict the oldest cache entries when cache is full."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
# Get oldest entries by creation time
|
||||
cursor = conn.execute("""
|
||||
SELECT id FROM outline_cache
|
||||
ORDER BY created_at ASC
|
||||
LIMIT ?
|
||||
""", (num_to_evict,))
|
||||
|
||||
old_ids = [row[0] for row in cursor.fetchall()]
|
||||
|
||||
if old_ids:
|
||||
placeholders = ','.join(['?' for _ in old_ids])
|
||||
conn.execute(f"DELETE FROM outline_cache WHERE id IN ({placeholders})", old_ids)
|
||||
logger.debug(f"Evicted {len(old_ids)} oldest outline cache entries")
|
||||
|
||||
conn.commit()
|
||||
|
||||
def get_cached_outline(self, keywords: List[str], industry: str, target_audience: str,
|
||||
word_count: int, custom_instructions: str = None, persona_data: Dict = None) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Get cached outline result for exact parameter match.
|
||||
|
||||
Args:
|
||||
keywords: List of research keywords
|
||||
industry: Industry context
|
||||
target_audience: Target audience context
|
||||
word_count: Target word count for outline
|
||||
custom_instructions: Custom instructions for outline generation
|
||||
persona_data: Persona information
|
||||
|
||||
Returns:
|
||||
Cached outline result if found and valid, None otherwise
|
||||
"""
|
||||
cache_key = self._generate_cache_key(keywords, industry, target_audience, word_count, custom_instructions, persona_data)
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("""
|
||||
SELECT result_data, expires_at FROM outline_cache
|
||||
WHERE cache_key = ? AND expires_at > ?
|
||||
""", (cache_key, datetime.now().isoformat()))
|
||||
|
||||
row = cursor.fetchone()
|
||||
|
||||
if row is None:
|
||||
logger.debug(f"Outline cache miss for keywords: {keywords}, word_count: {word_count}")
|
||||
return None
|
||||
|
||||
# Update access statistics
|
||||
conn.execute("""
|
||||
UPDATE outline_cache
|
||||
SET access_count = access_count + 1, last_accessed = CURRENT_TIMESTAMP
|
||||
WHERE cache_key = ?
|
||||
""", (cache_key,))
|
||||
conn.commit()
|
||||
|
||||
try:
|
||||
result_data = json.loads(row[0])
|
||||
logger.info(f"Outline cache hit for keywords: {keywords}, word_count: {word_count} (saved expensive generation)")
|
||||
return result_data
|
||||
except json.JSONDecodeError:
|
||||
logger.error(f"Invalid JSON in outline cache for keywords: {keywords}")
|
||||
# Remove invalid entry
|
||||
conn.execute("DELETE FROM outline_cache WHERE cache_key = ?", (cache_key,))
|
||||
conn.commit()
|
||||
return None
|
||||
|
||||
def cache_outline(self, keywords: List[str], industry: str, target_audience: str,
|
||||
word_count: int, custom_instructions: str, persona_data: Dict, result: Dict[str, Any]):
|
||||
"""
|
||||
Cache an outline generation result.
|
||||
|
||||
Args:
|
||||
keywords: List of research keywords
|
||||
industry: Industry context
|
||||
target_audience: Target audience context
|
||||
word_count: Target word count for outline
|
||||
custom_instructions: Custom instructions for outline generation
|
||||
persona_data: Persona information
|
||||
result: Outline result to cache
|
||||
"""
|
||||
cache_key = self._generate_cache_key(keywords, industry, target_audience, word_count, custom_instructions, persona_data)
|
||||
|
||||
# Cleanup expired entries first
|
||||
self._cleanup_expired_entries()
|
||||
|
||||
# Check if cache is full and evict if necessary
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("SELECT COUNT(*) FROM outline_cache")
|
||||
current_count = cursor.fetchone()[0]
|
||||
|
||||
if current_count >= self.max_cache_size:
|
||||
num_to_evict = current_count - self.max_cache_size + 1
|
||||
self._evict_oldest_entries(num_to_evict)
|
||||
|
||||
# Store the result
|
||||
expires_at = datetime.now() + self.cache_ttl
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("""
|
||||
INSERT OR REPLACE INTO outline_cache
|
||||
(cache_key, keywords, industry, target_audience, word_count, custom_instructions, persona_data, result_data, expires_at)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||
""", (
|
||||
cache_key,
|
||||
json.dumps(keywords),
|
||||
industry,
|
||||
target_audience,
|
||||
word_count,
|
||||
custom_instructions or "",
|
||||
json.dumps(persona_data) if persona_data else "",
|
||||
json.dumps(result),
|
||||
expires_at.isoformat()
|
||||
))
|
||||
conn.commit()
|
||||
|
||||
logger.info(f"Cached outline result for keywords: {keywords}, word_count: {word_count}")
|
||||
|
||||
def get_cache_stats(self) -> Dict[str, Any]:
|
||||
"""Get cache statistics."""
|
||||
self._cleanup_expired_entries()
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
# Get basic stats
|
||||
cursor = conn.execute("SELECT COUNT(*) FROM outline_cache")
|
||||
total_entries = cursor.fetchone()[0]
|
||||
|
||||
cursor = conn.execute("SELECT COUNT(*) FROM outline_cache WHERE expires_at > ?", (datetime.now().isoformat(),))
|
||||
valid_entries = cursor.fetchone()[0]
|
||||
|
||||
# Get most accessed entries
|
||||
cursor = conn.execute("""
|
||||
SELECT keywords, industry, target_audience, word_count, access_count, created_at
|
||||
FROM outline_cache
|
||||
ORDER BY access_count DESC
|
||||
LIMIT 10
|
||||
""")
|
||||
top_entries = [
|
||||
{
|
||||
'keywords': json.loads(row[0]),
|
||||
'industry': row[1],
|
||||
'target_audience': row[2],
|
||||
'word_count': row[3],
|
||||
'access_count': row[4],
|
||||
'created_at': row[5]
|
||||
}
|
||||
for row in cursor.fetchall()
|
||||
]
|
||||
|
||||
# Get database size
|
||||
cursor = conn.execute("SELECT page_count * page_size as size FROM pragma_page_count(), pragma_page_size()")
|
||||
db_size_bytes = cursor.fetchone()[0]
|
||||
db_size_mb = db_size_bytes / (1024 * 1024)
|
||||
|
||||
return {
|
||||
'total_entries': total_entries,
|
||||
'valid_entries': valid_entries,
|
||||
'expired_entries': total_entries - valid_entries,
|
||||
'max_size': self.max_cache_size,
|
||||
'ttl_hours': self.cache_ttl.total_seconds() / 3600,
|
||||
'database_size_mb': round(db_size_mb, 2),
|
||||
'top_accessed_entries': top_entries
|
||||
}
|
||||
|
||||
def clear_cache(self):
|
||||
"""Clear all cached entries."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("DELETE FROM outline_cache")
|
||||
conn.commit()
|
||||
logger.info("Outline cache cleared")
|
||||
|
||||
def get_cache_entries(self, limit: int = 50) -> List[Dict[str, Any]]:
|
||||
"""Get recent cache entries for debugging."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("""
|
||||
SELECT keywords, industry, target_audience, word_count, custom_instructions, created_at, expires_at, access_count
|
||||
FROM outline_cache
|
||||
ORDER BY created_at DESC
|
||||
LIMIT ?
|
||||
""", (limit,))
|
||||
|
||||
return [
|
||||
{
|
||||
'keywords': json.loads(row[0]),
|
||||
'industry': row[1],
|
||||
'target_audience': row[2],
|
||||
'word_count': row[3],
|
||||
'custom_instructions': row[4],
|
||||
'created_at': row[5],
|
||||
'expires_at': row[6],
|
||||
'access_count': row[7]
|
||||
}
|
||||
for row in cursor.fetchall()
|
||||
]
|
||||
|
||||
def invalidate_cache_for_keywords(self, keywords: List[str]):
|
||||
"""
|
||||
Invalidate all cache entries for specific keywords.
|
||||
Useful when research data is updated.
|
||||
|
||||
Args:
|
||||
keywords: Keywords to invalidate cache for
|
||||
"""
|
||||
normalized_keywords = sorted([kw.lower().strip() for kw in keywords])
|
||||
keywords_json = json.dumps(normalized_keywords)
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("DELETE FROM outline_cache WHERE keywords = ?", (keywords_json,))
|
||||
deleted_count = cursor.rowcount
|
||||
conn.commit()
|
||||
|
||||
if deleted_count > 0:
|
||||
logger.info(f"Invalidated {deleted_count} outline cache entries for keywords: {keywords}")
|
||||
|
||||
|
||||
# Global persistent cache instance
|
||||
persistent_outline_cache = PersistentOutlineCache()
|
||||
283
backend/services/cache/persistent_research_cache.py
vendored
Normal file
283
backend/services/cache/persistent_research_cache.py
vendored
Normal file
@@ -0,0 +1,283 @@
|
||||
"""
|
||||
Persistent Research Cache Service
|
||||
|
||||
Provides database-backed caching for research results to survive server restarts
|
||||
and provide better cache management across multiple instances.
|
||||
"""
|
||||
|
||||
import hashlib
|
||||
import json
|
||||
import sqlite3
|
||||
from typing import Dict, Any, Optional, List
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from loguru import logger
|
||||
|
||||
|
||||
class PersistentResearchCache:
|
||||
"""Database-backed cache for research results with exact keyword matching."""
|
||||
|
||||
def __init__(self, db_path: str = "research_cache.db", max_cache_size: int = 1000, cache_ttl_hours: int = 24):
|
||||
"""
|
||||
Initialize the persistent research cache.
|
||||
|
||||
Args:
|
||||
db_path: Path to SQLite database file
|
||||
max_cache_size: Maximum number of cached entries
|
||||
cache_ttl_hours: Time-to-live for cache entries in hours
|
||||
"""
|
||||
self.db_path = db_path
|
||||
self.max_cache_size = max_cache_size
|
||||
self.cache_ttl = timedelta(hours=cache_ttl_hours)
|
||||
|
||||
# Ensure database directory exists
|
||||
Path(db_path).parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Initialize database
|
||||
self._init_database()
|
||||
|
||||
def _init_database(self):
|
||||
"""Initialize the SQLite database with required tables."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("""
|
||||
CREATE TABLE IF NOT EXISTS research_cache (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
cache_key TEXT UNIQUE NOT NULL,
|
||||
keywords TEXT NOT NULL,
|
||||
industry TEXT NOT NULL,
|
||||
target_audience TEXT NOT NULL,
|
||||
result_data TEXT NOT NULL,
|
||||
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
expires_at TIMESTAMP NOT NULL,
|
||||
access_count INTEGER DEFAULT 0,
|
||||
last_accessed TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
||||
)
|
||||
""")
|
||||
|
||||
# Create indexes for better performance
|
||||
conn.execute("CREATE INDEX IF NOT EXISTS idx_cache_key ON research_cache(cache_key)")
|
||||
conn.execute("CREATE INDEX IF NOT EXISTS idx_expires_at ON research_cache(expires_at)")
|
||||
conn.execute("CREATE INDEX IF NOT EXISTS idx_created_at ON research_cache(created_at)")
|
||||
|
||||
conn.commit()
|
||||
|
||||
def _generate_cache_key(self, keywords: List[str], industry: str, target_audience: str) -> str:
|
||||
"""
|
||||
Generate a cache key based on exact keyword match.
|
||||
|
||||
Args:
|
||||
keywords: List of research keywords
|
||||
industry: Industry context
|
||||
target_audience: Target audience context
|
||||
|
||||
Returns:
|
||||
MD5 hash of the normalized parameters
|
||||
"""
|
||||
# Normalize and sort keywords for consistent hashing
|
||||
normalized_keywords = sorted([kw.lower().strip() for kw in keywords])
|
||||
normalized_industry = industry.lower().strip() if industry else "general"
|
||||
normalized_audience = target_audience.lower().strip() if target_audience else "general"
|
||||
|
||||
# Create a consistent string representation
|
||||
cache_string = f"{normalized_keywords}|{normalized_industry}|{normalized_audience}"
|
||||
|
||||
# Generate MD5 hash
|
||||
return hashlib.md5(cache_string.encode('utf-8')).hexdigest()
|
||||
|
||||
def _cleanup_expired_entries(self):
|
||||
"""Remove expired cache entries from database."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute(
|
||||
"DELETE FROM research_cache WHERE expires_at < ?",
|
||||
(datetime.now().isoformat(),)
|
||||
)
|
||||
deleted_count = cursor.rowcount
|
||||
if deleted_count > 0:
|
||||
logger.debug(f"Removed {deleted_count} expired cache entries")
|
||||
conn.commit()
|
||||
|
||||
def _evict_oldest_entries(self, num_to_evict: int):
|
||||
"""Evict the oldest cache entries when cache is full."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
# Get oldest entries by creation time
|
||||
cursor = conn.execute("""
|
||||
SELECT id FROM research_cache
|
||||
ORDER BY created_at ASC
|
||||
LIMIT ?
|
||||
""", (num_to_evict,))
|
||||
|
||||
old_ids = [row[0] for row in cursor.fetchall()]
|
||||
|
||||
if old_ids:
|
||||
placeholders = ','.join(['?' for _ in old_ids])
|
||||
conn.execute(f"DELETE FROM research_cache WHERE id IN ({placeholders})", old_ids)
|
||||
logger.debug(f"Evicted {len(old_ids)} oldest cache entries")
|
||||
|
||||
conn.commit()
|
||||
|
||||
def get_cached_result(self, keywords: List[str], industry: str, target_audience: str) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Get cached research result for exact keyword match.
|
||||
|
||||
Args:
|
||||
keywords: List of research keywords
|
||||
industry: Industry context
|
||||
target_audience: Target audience context
|
||||
|
||||
Returns:
|
||||
Cached research result if found and valid, None otherwise
|
||||
"""
|
||||
cache_key = self._generate_cache_key(keywords, industry, target_audience)
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("""
|
||||
SELECT result_data, expires_at FROM research_cache
|
||||
WHERE cache_key = ? AND expires_at > ?
|
||||
""", (cache_key, datetime.now().isoformat()))
|
||||
|
||||
row = cursor.fetchone()
|
||||
|
||||
if row is None:
|
||||
logger.debug(f"Cache miss for keywords: {keywords}")
|
||||
return None
|
||||
|
||||
# Update access statistics
|
||||
conn.execute("""
|
||||
UPDATE research_cache
|
||||
SET access_count = access_count + 1, last_accessed = CURRENT_TIMESTAMP
|
||||
WHERE cache_key = ?
|
||||
""", (cache_key,))
|
||||
conn.commit()
|
||||
|
||||
try:
|
||||
result_data = json.loads(row[0])
|
||||
logger.info(f"Cache hit for keywords: {keywords} (saved API call)")
|
||||
return result_data
|
||||
except json.JSONDecodeError:
|
||||
logger.error(f"Invalid JSON in cache for keywords: {keywords}")
|
||||
# Remove invalid entry
|
||||
conn.execute("DELETE FROM research_cache WHERE cache_key = ?", (cache_key,))
|
||||
conn.commit()
|
||||
return None
|
||||
|
||||
def cache_result(self, keywords: List[str], industry: str, target_audience: str, result: Dict[str, Any]):
|
||||
"""
|
||||
Cache a research result.
|
||||
|
||||
Args:
|
||||
keywords: List of research keywords
|
||||
industry: Industry context
|
||||
target_audience: Target audience context
|
||||
result: Research result to cache
|
||||
"""
|
||||
cache_key = self._generate_cache_key(keywords, industry, target_audience)
|
||||
|
||||
# Cleanup expired entries first
|
||||
self._cleanup_expired_entries()
|
||||
|
||||
# Check if cache is full and evict if necessary
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("SELECT COUNT(*) FROM research_cache")
|
||||
current_count = cursor.fetchone()[0]
|
||||
|
||||
if current_count >= self.max_cache_size:
|
||||
num_to_evict = current_count - self.max_cache_size + 1
|
||||
self._evict_oldest_entries(num_to_evict)
|
||||
|
||||
# Store the result
|
||||
expires_at = datetime.now() + self.cache_ttl
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("""
|
||||
INSERT OR REPLACE INTO research_cache
|
||||
(cache_key, keywords, industry, target_audience, result_data, expires_at)
|
||||
VALUES (?, ?, ?, ?, ?, ?)
|
||||
""", (
|
||||
cache_key,
|
||||
json.dumps(keywords),
|
||||
industry,
|
||||
target_audience,
|
||||
json.dumps(result),
|
||||
expires_at.isoformat()
|
||||
))
|
||||
conn.commit()
|
||||
|
||||
logger.info(f"Cached research result for keywords: {keywords}")
|
||||
|
||||
def get_cache_stats(self) -> Dict[str, Any]:
|
||||
"""Get cache statistics."""
|
||||
self._cleanup_expired_entries()
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
# Get basic stats
|
||||
cursor = conn.execute("SELECT COUNT(*) FROM research_cache")
|
||||
total_entries = cursor.fetchone()[0]
|
||||
|
||||
cursor = conn.execute("SELECT COUNT(*) FROM research_cache WHERE expires_at > ?", (datetime.now().isoformat(),))
|
||||
valid_entries = cursor.fetchone()[0]
|
||||
|
||||
# Get most accessed entries
|
||||
cursor = conn.execute("""
|
||||
SELECT keywords, industry, target_audience, access_count, created_at
|
||||
FROM research_cache
|
||||
ORDER BY access_count DESC
|
||||
LIMIT 10
|
||||
""")
|
||||
top_entries = [
|
||||
{
|
||||
'keywords': json.loads(row[0]),
|
||||
'industry': row[1],
|
||||
'target_audience': row[2],
|
||||
'access_count': row[3],
|
||||
'created_at': row[4]
|
||||
}
|
||||
for row in cursor.fetchall()
|
||||
]
|
||||
|
||||
# Get database size
|
||||
cursor = conn.execute("SELECT page_count * page_size as size FROM pragma_page_count(), pragma_page_size()")
|
||||
db_size_bytes = cursor.fetchone()[0]
|
||||
db_size_mb = db_size_bytes / (1024 * 1024)
|
||||
|
||||
return {
|
||||
'total_entries': total_entries,
|
||||
'valid_entries': valid_entries,
|
||||
'expired_entries': total_entries - valid_entries,
|
||||
'max_size': self.max_cache_size,
|
||||
'ttl_hours': self.cache_ttl.total_seconds() / 3600,
|
||||
'database_size_mb': round(db_size_mb, 2),
|
||||
'top_accessed_entries': top_entries
|
||||
}
|
||||
|
||||
def clear_cache(self):
|
||||
"""Clear all cached entries."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("DELETE FROM research_cache")
|
||||
conn.commit()
|
||||
logger.info("Research cache cleared")
|
||||
|
||||
def get_cache_entries(self, limit: int = 50) -> List[Dict[str, Any]]:
|
||||
"""Get recent cache entries for debugging."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("""
|
||||
SELECT keywords, industry, target_audience, created_at, expires_at, access_count
|
||||
FROM research_cache
|
||||
ORDER BY created_at DESC
|
||||
LIMIT ?
|
||||
""", (limit,))
|
||||
|
||||
return [
|
||||
{
|
||||
'keywords': json.loads(row[0]),
|
||||
'industry': row[1],
|
||||
'target_audience': row[2],
|
||||
'created_at': row[3],
|
||||
'expires_at': row[4],
|
||||
'access_count': row[5]
|
||||
}
|
||||
for row in cursor.fetchall()
|
||||
]
|
||||
|
||||
|
||||
# Global persistent cache instance
|
||||
persistent_research_cache = PersistentResearchCache()
|
||||
172
backend/services/cache/research_cache.py
vendored
Normal file
172
backend/services/cache/research_cache.py
vendored
Normal file
@@ -0,0 +1,172 @@
|
||||
"""
|
||||
Research Cache Service
|
||||
|
||||
Provides intelligent caching for Google grounded research results to reduce API costs.
|
||||
Only returns cached results for exact keyword matches to ensure accuracy.
|
||||
"""
|
||||
|
||||
import hashlib
|
||||
import json
|
||||
from typing import Dict, Any, Optional, List
|
||||
from datetime import datetime, timedelta
|
||||
from loguru import logger
|
||||
|
||||
|
||||
class ResearchCache:
|
||||
"""Cache for research results with exact keyword matching."""
|
||||
|
||||
def __init__(self, max_cache_size: int = 100, cache_ttl_hours: int = 24):
|
||||
"""
|
||||
Initialize the research cache.
|
||||
|
||||
Args:
|
||||
max_cache_size: Maximum number of cached entries
|
||||
cache_ttl_hours: Time-to-live for cache entries in hours
|
||||
"""
|
||||
self.cache: Dict[str, Dict[str, Any]] = {}
|
||||
self.max_cache_size = max_cache_size
|
||||
self.cache_ttl = timedelta(hours=cache_ttl_hours)
|
||||
|
||||
def _generate_cache_key(self, keywords: List[str], industry: str, target_audience: str) -> str:
|
||||
"""
|
||||
Generate a cache key based on exact keyword match.
|
||||
|
||||
Args:
|
||||
keywords: List of research keywords
|
||||
industry: Industry context
|
||||
target_audience: Target audience context
|
||||
|
||||
Returns:
|
||||
MD5 hash of the normalized parameters
|
||||
"""
|
||||
# Normalize and sort keywords for consistent hashing
|
||||
normalized_keywords = sorted([kw.lower().strip() for kw in keywords])
|
||||
normalized_industry = industry.lower().strip() if industry else "general"
|
||||
normalized_audience = target_audience.lower().strip() if target_audience else "general"
|
||||
|
||||
# Create a consistent string representation
|
||||
cache_string = f"{normalized_keywords}|{normalized_industry}|{normalized_audience}"
|
||||
|
||||
# Generate MD5 hash
|
||||
return hashlib.md5(cache_string.encode('utf-8')).hexdigest()
|
||||
|
||||
def _is_cache_entry_valid(self, entry: Dict[str, Any]) -> bool:
|
||||
"""Check if a cache entry is still valid (not expired)."""
|
||||
if 'created_at' not in entry:
|
||||
return False
|
||||
|
||||
created_at = datetime.fromisoformat(entry['created_at'])
|
||||
return datetime.now() - created_at < self.cache_ttl
|
||||
|
||||
def _cleanup_expired_entries(self):
|
||||
"""Remove expired cache entries."""
|
||||
expired_keys = []
|
||||
for key, entry in self.cache.items():
|
||||
if not self._is_cache_entry_valid(entry):
|
||||
expired_keys.append(key)
|
||||
|
||||
for key in expired_keys:
|
||||
del self.cache[key]
|
||||
logger.debug(f"Removed expired cache entry: {key}")
|
||||
|
||||
def _evict_oldest_entries(self, num_to_evict: int):
|
||||
"""Evict the oldest cache entries when cache is full."""
|
||||
# Sort by creation time and remove oldest entries
|
||||
sorted_entries = sorted(
|
||||
self.cache.items(),
|
||||
key=lambda x: x[1].get('created_at', ''),
|
||||
reverse=False
|
||||
)
|
||||
|
||||
for i in range(min(num_to_evict, len(sorted_entries))):
|
||||
key = sorted_entries[i][0]
|
||||
del self.cache[key]
|
||||
logger.debug(f"Evicted oldest cache entry: {key}")
|
||||
|
||||
def get_cached_result(self, keywords: List[str], industry: str, target_audience: str) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Get cached research result for exact keyword match.
|
||||
|
||||
Args:
|
||||
keywords: List of research keywords
|
||||
industry: Industry context
|
||||
target_audience: Target audience context
|
||||
|
||||
Returns:
|
||||
Cached research result if found and valid, None otherwise
|
||||
"""
|
||||
cache_key = self._generate_cache_key(keywords, industry, target_audience)
|
||||
|
||||
if cache_key not in self.cache:
|
||||
logger.debug(f"Cache miss for keywords: {keywords}")
|
||||
return None
|
||||
|
||||
entry = self.cache[cache_key]
|
||||
|
||||
# Check if entry is still valid
|
||||
if not self._is_cache_entry_valid(entry):
|
||||
del self.cache[cache_key]
|
||||
logger.debug(f"Cache entry expired for keywords: {keywords}")
|
||||
return None
|
||||
|
||||
logger.info(f"Cache hit for keywords: {keywords} (saved API call)")
|
||||
return entry.get('result')
|
||||
|
||||
def cache_result(self, keywords: List[str], industry: str, target_audience: str, result: Dict[str, Any]):
|
||||
"""
|
||||
Cache a research result.
|
||||
|
||||
Args:
|
||||
keywords: List of research keywords
|
||||
industry: Industry context
|
||||
target_audience: Target audience context
|
||||
result: Research result to cache
|
||||
"""
|
||||
cache_key = self._generate_cache_key(keywords, industry, target_audience)
|
||||
|
||||
# Cleanup expired entries first
|
||||
self._cleanup_expired_entries()
|
||||
|
||||
# Check if cache is full and evict if necessary
|
||||
if len(self.cache) >= self.max_cache_size:
|
||||
num_to_evict = len(self.cache) - self.max_cache_size + 1
|
||||
self._evict_oldest_entries(num_to_evict)
|
||||
|
||||
# Store the result
|
||||
self.cache[cache_key] = {
|
||||
'result': result,
|
||||
'created_at': datetime.now().isoformat(),
|
||||
'keywords': keywords,
|
||||
'industry': industry,
|
||||
'target_audience': target_audience
|
||||
}
|
||||
|
||||
logger.info(f"Cached research result for keywords: {keywords}")
|
||||
|
||||
def get_cache_stats(self) -> Dict[str, Any]:
|
||||
"""Get cache statistics."""
|
||||
self._cleanup_expired_entries()
|
||||
|
||||
return {
|
||||
'total_entries': len(self.cache),
|
||||
'max_size': self.max_cache_size,
|
||||
'ttl_hours': self.cache_ttl.total_seconds() / 3600,
|
||||
'entries': [
|
||||
{
|
||||
'keywords': entry['keywords'],
|
||||
'industry': entry['industry'],
|
||||
'target_audience': entry['target_audience'],
|
||||
'created_at': entry['created_at']
|
||||
}
|
||||
for entry in self.cache.values()
|
||||
]
|
||||
}
|
||||
|
||||
def clear_cache(self):
|
||||
"""Clear all cached entries."""
|
||||
self.cache.clear()
|
||||
logger.info("Research cache cleared")
|
||||
|
||||
|
||||
# Global cache instance
|
||||
research_cache = ResearchCache()
|
||||
Reference in New Issue
Block a user