Base code

This commit is contained in:
Kunthawat Greethong
2026-01-08 22:39:53 +07:00
parent 697115c61a
commit c35fa52117
2169 changed files with 626670 additions and 0 deletions

View File

@@ -0,0 +1,213 @@
"""
Facebook Persona Prompts
Contains Facebook-specific persona prompt generation logic.
"""
from typing import Dict, Any
from loguru import logger
class FacebookPersonaPrompts:
"""Facebook-specific persona prompt generation."""
@staticmethod
def build_facebook_system_prompt(core_persona: Dict[str, Any]) -> str:
"""
Build optimized system prompt with core persona for Facebook generation.
This moves the core persona to system prompt to free up context window.
"""
import json
return f"""You are an expert Facebook content strategist specializing in community engagement and social sharing optimization.
CORE PERSONA FOUNDATION:
{json.dumps(core_persona, indent=2)}
TASK: Create Facebook-optimized persona adaptations that maintain core identity while maximizing community engagement and Facebook algorithm performance.
FOCUS AREAS:
- Community-focused tone and engagement strategies
- Facebook algorithm optimization (engagement, reach, timing)
- Social sharing and viral content potential
- Facebook-specific features (Stories, Reels, Live, Groups, Events)
- Audience interaction and community building"""
@staticmethod
def build_focused_facebook_prompt(onboarding_data: Dict[str, Any]) -> str:
"""
Build focused Facebook prompt without core persona JSON to optimize context usage.
"""
# Extract audience context
audience_context = FacebookPersonaPrompts._extract_audience_context(onboarding_data)
target_audience = audience_context.get("target_audience", "general")
content_goals = audience_context.get("content_goals", "engagement")
business_type = audience_context.get("business_type", "general")
return f"""FACEBOOK OPTIMIZATION TASK: Create Facebook-specific adaptations for the core persona.
AUDIENCE CONTEXT:
- Target: {target_audience} | Goals: {content_goals} | Business: {business_type}
- Demographics: {audience_context.get('demographics', [])}
- Interests: {audience_context.get('interests', [])}
- Behaviors: {audience_context.get('behaviors', [])}
FACEBOOK SPECS:
- Character Limit: 63,206 | Optimal Length: 40-80 words
- Algorithm Priority: Engagement, meaningful interactions, community building
- Content Types: Posts, Stories, Reels, Live, Events, Groups, Carousels, Polls
- Hashtag Strategy: 1-2 recommended (max 30)
- Link Strategy: Native content performs better
OPTIMIZATION REQUIREMENTS:
1. COMMUNITY-FOCUSED TONE:
- Authentic, conversational, approachable language
- Balance professionalism with relatability
- Incorporate storytelling and personal anecdotes
- Community-building elements
2. CONTENT STRATEGY FOR {business_type.upper()}:
- Community engagement content for {target_audience}
- Social sharing optimization for {content_goals}
- Facebook-specific content formats
- Audience interaction strategies
- Viral content potential
3. FACEBOOK-SPECIFIC ADAPTATIONS:
- Algorithm optimization (engagement, reach, timing)
- Platform-specific vocabulary and terminology
- Engagement patterns for Facebook audience
- Community interaction strategies
- Facebook feature optimization (Stories, Reels, Live, Events, Groups)
4. AUDIENCE TARGETING:
- Demographic-specific positioning
- Interest-based content adaptation
- Behavioral targeting considerations
- Community building strategies
- Engagement optimization tactics
Generate comprehensive Facebook-optimized persona maintaining core identity while maximizing community engagement and social sharing potential."""
@staticmethod
def _extract_audience_context(onboarding_data: Dict[str, Any]) -> Dict[str, Any]:
"""Extract audience context from onboarding data."""
try:
# Get enhanced analysis data
enhanced_analysis = onboarding_data.get("enhanced_analysis", {})
website_analysis = onboarding_data.get("website_analysis", {}) or {}
research_prefs = onboarding_data.get("research_preferences", {}) or {}
# Extract audience intelligence
audience_intel = enhanced_analysis.get("audience_intelligence", {})
# Extract target audience from website analysis
target_audience_data = website_analysis.get("target_audience", {}) or {}
# Build audience context
audience_context = {
"target_audience": target_audience_data.get("primary_audience", "general"),
"content_goals": research_prefs.get("content_goals", "engagement"),
"business_type": website_analysis.get("business_type", "general"),
"demographics": audience_intel.get("demographics", []),
"interests": audience_intel.get("interests", []),
"behaviors": audience_intel.get("behaviors", []),
"psychographic_profile": audience_intel.get("psychographic_profile", "general"),
"pain_points": audience_intel.get("pain_points", []),
"engagement_level": audience_intel.get("engagement_level", "moderate")
}
return audience_context
except Exception as e:
logger.warning(f"Error extracting audience context: {str(e)}")
return {
"target_audience": "general",
"content_goals": "engagement",
"business_type": "general",
"demographics": [],
"interests": [],
"behaviors": [],
"psychographic_profile": "general",
"pain_points": [],
"engagement_level": "moderate"
}
@staticmethod
def build_facebook_validation_prompt(persona_data: Dict[str, Any]) -> str:
"""Build optimized prompt for validating Facebook persona data."""
return f"""FACEBOOK PERSONA VALIDATION TASK: Validate Facebook persona data for completeness and quality.
PERSONA DATA:
{persona_data}
VALIDATION REQUIREMENTS:
1. COMPLETENESS CHECK:
- Verify all required Facebook-specific fields are present
- Check for missing algorithm optimization strategies
- Validate engagement strategy completeness
- Ensure content format rules are defined
2. QUALITY ASSESSMENT:
- Evaluate Facebook algorithm optimization quality
- Assess engagement strategy effectiveness
- Check content format optimization
- Validate audience targeting strategies
3. FACEBOOK-SPECIFIC VALIDATION:
- Verify Facebook platform constraints are respected
- Check for Facebook-specific best practices
- Validate community building strategies
- Ensure Facebook feature optimization
4. RECOMMENDATIONS:
- Provide specific improvement suggestions
- Identify missing optimization opportunities
- Suggest Facebook-specific enhancements
- Recommend engagement strategy improvements
Generate comprehensive validation report with scores, recommendations, and specific improvement suggestions for Facebook optimization."""
@staticmethod
def build_facebook_optimization_prompt(persona_data: Dict[str, Any]) -> str:
"""Build optimized prompt for optimizing Facebook persona data."""
return f"""FACEBOOK PERSONA OPTIMIZATION TASK: Optimize Facebook persona data for maximum algorithm performance and community engagement.
CURRENT PERSONA DATA:
{persona_data}
OPTIMIZATION REQUIREMENTS:
1. ALGORITHM OPTIMIZATION:
- Enhance Facebook algorithm performance strategies
- Optimize for Facebook's engagement metrics
- Improve content timing and frequency
- Enhance audience targeting precision
2. ENGAGEMENT OPTIMIZATION:
- Strengthen community building strategies
- Enhance social sharing potential
- Improve audience interaction tactics
- Optimize content for viral potential
3. CONTENT FORMAT OPTIMIZATION:
- Optimize for Facebook's content formats
- Enhance visual content strategies
- Improve video content optimization
- Optimize for Facebook Stories and Reels
4. AUDIENCE TARGETING OPTIMIZATION:
- Refine demographic targeting
- Enhance interest-based targeting
- Improve behavioral targeting
- Optimize for Facebook's audience insights
5. COMMUNITY BUILDING OPTIMIZATION:
- Enhance group management strategies
- Improve event management tactics
- Optimize live streaming strategies
- Enhance community interaction methods
Generate optimized Facebook persona data with enhanced algorithm performance, engagement strategies, and community building tactics."""

View File

@@ -0,0 +1,239 @@
"""
Facebook Persona Scheduler
Handles scheduled generation of Facebook personas after onboarding.
"""
from datetime import datetime, timedelta, timezone
from typing import Dict, Any
from loguru import logger
from services.database import get_db_session
from services.persona_data_service import PersonaDataService
from services.persona.facebook.facebook_persona_service import FacebookPersonaService
from services.onboarding.database_service import OnboardingDatabaseService
from models.scheduler_models import SchedulerEventLog
async def generate_facebook_persona_task(user_id: str):
"""
Async task function to generate Facebook persona for a user.
This function is called by the scheduler 20 minutes after onboarding completion.
Args:
user_id: User ID (Clerk string)
"""
db = None
try:
logger.info(f"Scheduled Facebook persona generation started for user {user_id}")
db = get_db_session()
if not db:
logger.error(f"Failed to get database session for Facebook persona generation (user: {user_id})")
return
# Get persona data service
persona_data_service = PersonaDataService(db_session=db)
onboarding_service = OnboardingDatabaseService(db=db)
# Get core persona (required for Facebook persona)
persona_data = persona_data_service.get_user_persona_data(user_id)
if not persona_data or not persona_data.get('core_persona'):
logger.warning(f"No core persona found for user {user_id}, cannot generate Facebook persona")
return
core_persona = persona_data.get('core_persona', {})
# Get onboarding data for context
website_analysis = onboarding_service.get_website_analysis(user_id, db)
research_prefs = onboarding_service.get_research_preferences(user_id, db)
onboarding_data = {
"website_url": website_analysis.get('website_url', '') if website_analysis else '',
"writing_style": website_analysis.get('writing_style', {}) if website_analysis else {},
"content_characteristics": website_analysis.get('content_characteristics', {}) if website_analysis else {},
"target_audience": website_analysis.get('target_audience', '') if website_analysis else '',
"research_preferences": research_prefs or {}
}
# Check if persona already exists to avoid unnecessary API calls
platform_personas = persona_data.get('platform_personas', {}) if persona_data else {}
if platform_personas.get('facebook'):
logger.info(f"Facebook persona already exists for user {user_id}, skipping generation")
return
start_time = datetime.utcnow()
# Generate Facebook persona
facebook_service = FacebookPersonaService()
try:
generated_persona = facebook_service.generate_facebook_persona(
core_persona,
onboarding_data
)
execution_time = (datetime.utcnow() - start_time).total_seconds()
if generated_persona and "error" not in generated_persona:
# Save to database
success = persona_data_service.save_platform_persona(user_id, 'facebook', generated_persona)
if success:
logger.info(f"✅ Scheduled Facebook persona generation completed for user {user_id}")
# Log success to scheduler event log for dashboard
try:
event_log = SchedulerEventLog(
event_type='job_completed',
event_date=start_time,
job_id=f"facebook_persona_{user_id}",
job_type='one_time',
user_id=user_id,
event_data={
'job_function': 'generate_facebook_persona_task',
'execution_time_seconds': execution_time,
'status': 'success'
}
)
db.add(event_log)
db.commit()
except Exception as log_error:
logger.warning(f"Failed to log Facebook persona generation success to scheduler event log: {log_error}")
if db:
db.rollback()
else:
error_msg = f"Failed to save Facebook persona for user {user_id}"
logger.warning(f"⚠️ {error_msg}")
# Log failure to scheduler event log
try:
event_log = SchedulerEventLog(
event_type='job_failed',
event_date=start_time,
job_id=f"facebook_persona_{user_id}",
job_type='one_time',
user_id=user_id,
error_message=error_msg,
event_data={
'job_function': 'generate_facebook_persona_task',
'execution_time_seconds': execution_time,
'status': 'failed',
'failure_reason': 'save_failed',
'expensive_api_call': True
}
)
db.add(event_log)
db.commit()
except Exception as log_error:
logger.warning(f"Failed to log Facebook persona save failure to scheduler event log: {log_error}")
if db:
db.rollback()
else:
error_msg = f"Scheduled Facebook persona generation failed for user {user_id}: {generated_persona}"
logger.error(f"{error_msg}")
# Log failure to scheduler event log for dashboard visibility
try:
event_log = SchedulerEventLog(
event_type='job_failed',
event_date=start_time,
job_id=f"facebook_persona_{user_id}", # Match scheduled job ID format
job_type='one_time',
user_id=user_id,
error_message=error_msg,
event_data={
'job_function': 'generate_facebook_persona_task',
'execution_time_seconds': execution_time,
'status': 'failed',
'failure_reason': 'generation_returned_error',
'expensive_api_call': True
}
)
db.add(event_log)
db.commit()
except Exception as log_error:
logger.warning(f"Failed to log Facebook persona generation failure to scheduler event log: {log_error}")
if db:
db.rollback()
except Exception as gen_error:
execution_time = (datetime.utcnow() - start_time).total_seconds()
error_msg = f"Exception during scheduled Facebook persona generation for user {user_id}: {str(gen_error)}. Expensive API call may have been made."
logger.error(f"{error_msg}")
# Log exception to scheduler event log for dashboard visibility
try:
event_log = SchedulerEventLog(
event_type='job_failed',
event_date=start_time,
job_id=f"facebook_persona_{user_id}", # Match scheduled job ID format
job_type='one_time',
user_id=user_id,
error_message=error_msg,
event_data={
'job_function': 'generate_facebook_persona_task',
'execution_time_seconds': execution_time,
'status': 'failed',
'failure_reason': 'exception',
'exception_type': type(gen_error).__name__,
'exception_message': str(gen_error),
'expensive_api_call': True
}
)
db.add(event_log)
db.commit()
except Exception as log_error:
logger.warning(f"Failed to log Facebook persona generation exception to scheduler event log: {log_error}")
if db:
db.rollback()
except Exception as e:
logger.error(f"Error in scheduled Facebook persona generation for user {user_id}: {e}")
finally:
if db:
try:
db.close()
except Exception as e:
logger.error(f"Error closing database session: {e}")
def schedule_facebook_persona_generation(user_id: str, delay_minutes: int = 20) -> str:
"""
Schedule Facebook persona generation for a user after a delay.
Args:
user_id: User ID (Clerk string)
delay_minutes: Delay in minutes before generating persona (default: 20)
Returns:
Job ID
"""
try:
from services.scheduler import get_scheduler
scheduler = get_scheduler()
# Calculate run date (current time + delay) - ensure UTC timezone-aware
run_date = datetime.now(timezone.utc) + timedelta(minutes=delay_minutes)
# Generate consistent job ID (without timestamp) for proper restoration
# This allows restoration to find and restore the job with original scheduled time
# Note: Clerk user_id already includes "user_" prefix, so we don't add it again
job_id = f"facebook_persona_{user_id}"
# Schedule the task
scheduled_job_id = scheduler.schedule_one_time_task(
func=generate_facebook_persona_task,
run_date=run_date,
job_id=job_id,
kwargs={"user_id": user_id},
replace_existing=True
)
logger.info(
f"Scheduled Facebook persona generation for user {user_id} "
f"at {run_date} (job_id: {scheduled_job_id})"
)
return scheduled_job_id
except Exception as e:
logger.error(f"Failed to schedule Facebook persona generation for user {user_id}: {e}")
raise

View File

@@ -0,0 +1,364 @@
"""
Facebook Persona Schemas
Defines Facebook-specific persona data structures and validation schemas.
"""
from typing import Dict, Any, List, Optional
from pydantic import BaseModel, Field
class FacebookPersonaSchema(BaseModel):
"""Facebook-specific persona schema with platform optimizations."""
# Core persona fields (inherited from base persona)
persona_name: str = Field(..., description="Name of the persona")
archetype: str = Field(..., description="Persona archetype")
core_belief: str = Field(..., description="Core belief driving the persona")
# Facebook-specific optimizations
facebook_algorithm_optimization: Dict[str, Any] = Field(
default_factory=dict,
description="Facebook algorithm optimization strategies"
)
facebook_engagement_strategies: Dict[str, Any] = Field(
default_factory=dict,
description="Facebook-specific engagement strategies"
)
facebook_content_formats: Dict[str, Any] = Field(
default_factory=dict,
description="Facebook content format optimizations"
)
facebook_audience_targeting: Dict[str, Any] = Field(
default_factory=dict,
description="Facebook audience targeting strategies"
)
facebook_community_building: Dict[str, Any] = Field(
default_factory=dict,
description="Facebook community building strategies"
)
class FacebookPersonaConstraints:
"""Facebook platform constraints and best practices."""
@staticmethod
def get_facebook_constraints() -> Dict[str, Any]:
"""Get Facebook-specific platform constraints."""
return {
"character_limit": 63206,
"optimal_length": "40-80 words",
"hashtag_limit": 30,
"image_support": True,
"video_support": True,
"link_preview": True,
"event_support": True,
"group_sharing": True,
"story_support": True,
"reel_support": True,
"carousel_support": True,
"poll_support": True,
"live_support": True,
"algorithm_favors": [
"engagement",
"meaningful_interactions",
"video_content",
"community_posts",
"authentic_content"
],
"content_types": [
"text_posts",
"image_posts",
"video_posts",
"carousel_posts",
"story_posts",
"reel_posts",
"event_posts",
"poll_posts",
"live_posts"
],
"engagement_metrics": [
"likes",
"comments",
"shares",
"saves",
"clicks",
"reactions",
"video_views",
"story_views"
],
"posting_frequency": {
"optimal": "1-2 times per day",
"maximum": "3-4 times per day",
"minimum": "3-4 times per week"
},
"best_posting_times": [
"9:00 AM - 11:00 AM",
"1:00 PM - 3:00 PM",
"5:00 PM - 7:00 PM"
],
"content_guidelines": {
"authenticity": "High priority - Facebook favors authentic content",
"community_focus": "Build community and meaningful connections",
"visual_content": "Images and videos perform better than text-only",
"engagement_bait": "Avoid engagement bait - Facebook penalizes it",
"clickbait": "Avoid clickbait headlines and misleading content"
}
}
class FacebookPersonaValidation:
"""Facebook persona validation rules and scoring."""
@staticmethod
def validate_facebook_persona(persona_data: Dict[str, Any]) -> Dict[str, Any]:
"""Validate Facebook persona data for completeness and quality."""
validation_results = {
"is_valid": True,
"quality_score": 0.0,
"completeness_score": 0.0,
"facebook_optimization_score": 0.0,
"engagement_strategy_score": 0.0,
"missing_fields": [],
"incomplete_fields": [],
"recommendations": [],
"quality_issues": [],
"strengths": [],
"validation_details": {}
}
# Check required fields
required_fields = [
"persona_name", "archetype", "core_belief",
"facebook_algorithm_optimization", "facebook_engagement_strategies"
]
for field in required_fields:
if not persona_data.get(field):
validation_results["missing_fields"].append(field)
validation_results["is_valid"] = False
# Calculate completeness score
total_fields = len(required_fields)
present_fields = total_fields - len(validation_results["missing_fields"])
validation_results["completeness_score"] = (present_fields / total_fields) * 100
# Validate Facebook-specific optimizations
facebook_opt = persona_data.get("facebook_algorithm_optimization", {})
if facebook_opt:
validation_results["facebook_optimization_score"] = 85.0
validation_results["strengths"].append("Facebook algorithm optimization present")
else:
validation_results["quality_issues"].append("Missing Facebook algorithm optimization")
validation_results["recommendations"].append("Add Facebook-specific algorithm strategies")
# Validate engagement strategies
engagement_strategies = persona_data.get("facebook_engagement_strategies", {})
if engagement_strategies:
validation_results["engagement_strategy_score"] = 80.0
validation_results["strengths"].append("Facebook engagement strategies defined")
else:
validation_results["quality_issues"].append("Missing Facebook engagement strategies")
validation_results["recommendations"].append("Define Facebook-specific engagement tactics")
# Calculate overall quality score
validation_results["quality_score"] = (
validation_results["completeness_score"] * 0.4 +
validation_results["facebook_optimization_score"] * 0.3 +
validation_results["engagement_strategy_score"] * 0.3
)
# Add validation details
validation_results["validation_details"] = {
"total_fields_checked": total_fields,
"present_fields": present_fields,
"facebook_optimization_present": bool(facebook_opt),
"engagement_strategies_present": bool(engagement_strategies),
"validation_timestamp": "2024-01-01T00:00:00Z" # Will be updated with actual timestamp
}
return validation_results
class FacebookPersonaOptimization:
"""Facebook persona optimization strategies and techniques."""
@staticmethod
def get_facebook_optimization_strategies() -> Dict[str, Any]:
"""Get comprehensive Facebook optimization strategies."""
return {
"algorithm_optimization": {
"engagement_optimization": [
"Post when your audience is most active",
"Use Facebook's native video uploads instead of external links",
"Encourage meaningful comments and discussions",
"Respond to comments within 2 hours",
"Use Facebook Live for real-time engagement",
"Create shareable, valuable content",
"Use Facebook Stories for behind-the-scenes content",
"Leverage Facebook Groups for community building"
],
"content_quality_optimization": [
"Create authentic, original content",
"Use high-quality images and videos",
"Write compelling captions that encourage engagement",
"Use Facebook's built-in editing tools",
"Create content that sparks conversations",
"Share user-generated content",
"Use Facebook's trending topics and hashtags",
"Create content that provides value to your audience"
],
"timing_optimization": [
"Post during peak engagement hours (9-11 AM, 1-3 PM, 5-7 PM)",
"Use Facebook Insights to find your best posting times",
"Post consistently but not too frequently",
"Schedule posts for different time zones if global audience",
"Use Facebook's scheduling feature for optimal timing",
"Post when your competitors are less active",
"Consider your audience's daily routines and habits"
],
"audience_targeting_optimization": [
"Use Facebook's audience insights for targeting",
"Create content for specific audience segments",
"Use Facebook's lookalike audiences",
"Target based on interests and behaviors",
"Use Facebook's custom audiences",
"Create content that resonates with your core audience",
"Use Facebook's demographic targeting",
"Leverage Facebook's psychographic targeting"
]
},
"engagement_strategies": {
"community_building": [
"Create and moderate Facebook Groups",
"Host Facebook Live sessions regularly",
"Respond to all comments and messages",
"Share user-generated content",
"Create Facebook Events for community gatherings",
"Use Facebook's community features",
"Encourage user participation and feedback",
"Build relationships with your audience"
],
"content_engagement": [
"Ask questions in your posts",
"Use polls and surveys to engage audience",
"Create interactive content like quizzes",
"Use Facebook's reaction buttons strategically",
"Create content that encourages sharing",
"Use Facebook's tagging feature appropriately",
"Create content that sparks discussions",
"Use Facebook's story features for engagement"
],
"conversion_optimization": [
"Use clear call-to-actions in posts",
"Create Facebook-specific landing pages",
"Use Facebook's conversion tracking",
"Create content that drives traffic to your website",
"Use Facebook's lead generation features",
"Create content that builds trust and credibility",
"Use Facebook's retargeting capabilities",
"Create content that showcases your products/services"
]
},
"content_formats": {
"text_posts": {
"optimal_length": "40-80 words",
"best_practices": [
"Use compelling headlines",
"Include relevant hashtags (1-2)",
"Ask questions to encourage engagement",
"Use emojis sparingly but effectively",
"Include clear call-to-actions"
]
},
"image_posts": {
"optimal_specs": "1200x630 pixels",
"best_practices": [
"Use high-quality, original images",
"Include text overlay for key messages",
"Use consistent branding and colors",
"Create visually appealing graphics",
"Use Facebook's image editing tools"
]
},
"video_posts": {
"optimal_length": "15-60 seconds for feed, 2-3 minutes for longer content",
"best_practices": [
"Upload videos directly to Facebook",
"Create engaging thumbnails",
"Add captions for accessibility",
"Use Facebook's video editing tools",
"Create videos that work without sound"
]
},
"carousel_posts": {
"optimal_slides": "3-5 slides",
"best_practices": [
"Tell a story across slides",
"Use consistent design elements",
"Include clear navigation",
"Create slides that work individually",
"Use carousels for product showcases"
]
}
},
"audience_targeting": {
"demographic_targeting": [
"Age and gender targeting",
"Location-based targeting",
"Education and work targeting",
"Relationship status targeting",
"Language targeting"
],
"interest_targeting": [
"Hobbies and interests",
"Brand and product interests",
"Entertainment preferences",
"Lifestyle and behavior targeting",
"Purchase behavior targeting"
],
"behavioral_targeting": [
"Device usage patterns",
"Travel behavior",
"Purchase behavior",
"Digital activity patterns",
"Life events targeting"
]
},
"community_building": {
"group_management": [
"Create and moderate relevant Facebook Groups",
"Set clear group rules and guidelines",
"Encourage member participation",
"Share valuable content in groups",
"Use groups for customer support",
"Create group events and activities",
"Recognize and reward active members",
"Use groups for market research"
],
"event_management": [
"Create Facebook Events for promotions",
"Use events for product launches",
"Host virtual events and webinars",
"Create recurring events for consistency",
"Use events for community building",
"Promote events across all channels",
"Follow up with event attendees",
"Use events for lead generation"
],
"live_streaming": [
"Host regular Facebook Live sessions",
"Use live streaming for Q&A sessions",
"Create behind-the-scenes content",
"Use live streaming for product demos",
"Engage with viewers in real-time",
"Use live streaming for announcements",
"Create interactive live content",
"Use live streaming for customer support"
]
}
}

View File

@@ -0,0 +1,449 @@
"""
Facebook Persona Service
Encapsulates Facebook-specific persona generation logic.
"""
from typing import Dict, Any, Optional
from loguru import logger
from datetime import datetime
from .facebook_persona_schemas import (
FacebookPersonaSchema,
FacebookPersonaConstraints,
FacebookPersonaValidation,
FacebookPersonaOptimization
)
from .facebook_persona_prompts import FacebookPersonaPrompts
from services.llm_providers.gemini_provider import gemini_structured_json_response
class FacebookPersonaService:
"""Facebook-specific persona generation and optimization service."""
_instance = None
_initialized = False
def __new__(cls):
"""Implement singleton pattern to prevent multiple initializations."""
if cls._instance is None:
cls._instance = super(FacebookPersonaService, cls).__new__(cls)
return cls._instance
def __init__(self):
"""Initialize the Facebook persona service (only once)."""
if not self._initialized:
self.schemas = FacebookPersonaSchema
self.constraints = FacebookPersonaConstraints()
self.validation = FacebookPersonaValidation()
self.optimization = FacebookPersonaOptimization()
self.prompts = FacebookPersonaPrompts()
logger.debug("FacebookPersonaService initialized")
self._initialized = True
def generate_facebook_persona(self, core_persona: Dict[str, Any], onboarding_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate Facebook-specific persona adaptation using optimized chained prompts.
Args:
core_persona: The core persona data
onboarding_data: User onboarding data
Returns:
Facebook-optimized persona data
"""
try:
logger.info("Generating Facebook-specific persona with optimized prompts")
# Build focused Facebook prompt (without core persona JSON)
prompt = self.prompts.build_focused_facebook_prompt(onboarding_data)
# Create system prompt with core persona
system_prompt = self.prompts.build_facebook_system_prompt(core_persona)
# Get Facebook-specific schema
schema = self._get_enhanced_facebook_schema()
# Generate structured response using Gemini with optimized prompts
response = gemini_structured_json_response(
prompt=prompt,
schema=schema,
temperature=0.2,
max_tokens=4096,
system_prompt=system_prompt
)
if not response or "error" in response:
logger.error(f"Failed to generate Facebook persona: {response}")
return {"error": f"Failed to generate Facebook persona: {response}"}
# Validate the generated persona
validation_results = self.validate_facebook_persona(response)
# Apply algorithm optimization
optimized_persona = self.optimize_for_facebook_algorithm(response)
# Add validation results to the persona
optimized_persona["validation_results"] = validation_results
logger.info(f"✅ Facebook persona generated successfully with {validation_results['quality_score']:.1f}% quality score")
return optimized_persona
except Exception as e:
logger.error(f"Error generating Facebook persona: {str(e)}")
return {"error": f"Failed to generate Facebook persona: {str(e)}"}
def get_facebook_constraints(self) -> Dict[str, Any]:
"""Get Facebook-specific platform constraints."""
return self.constraints.get_facebook_constraints()
def validate_facebook_persona(self, persona_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Validate Facebook persona data for completeness and quality.
Args:
persona_data: Facebook persona data to validate
Returns:
Validation results with scores and recommendations
"""
try:
logger.info("Validating Facebook persona data")
# Use the validation class
validation_results = self.validation.validate_facebook_persona(persona_data)
# Initialize missing fields if they don't exist
if "content_format_score" not in validation_results:
validation_results["content_format_score"] = 0.0
if "audience_targeting_score" not in validation_results:
validation_results["audience_targeting_score"] = 0.0
if "community_building_score" not in validation_results:
validation_results["community_building_score"] = 0.0
# Add Facebook-specific validation
facebook_opt = persona_data.get("facebook_algorithm_optimization", {})
if facebook_opt:
validation_results["facebook_optimization_score"] = 90.0
validation_results["strengths"].append("Facebook algorithm optimization present")
else:
validation_results["quality_issues"].append("Missing Facebook algorithm optimization")
validation_results["recommendations"].append("Add Facebook-specific algorithm strategies")
# Validate engagement strategies
engagement_strategies = persona_data.get("facebook_engagement_strategies", {})
if engagement_strategies:
validation_results["engagement_strategy_score"] = 85.0
validation_results["strengths"].append("Facebook engagement strategies defined")
else:
validation_results["quality_issues"].append("Missing Facebook engagement strategies")
validation_results["recommendations"].append("Define Facebook-specific engagement tactics")
# Validate content formats
content_formats = persona_data.get("facebook_content_formats", {})
if content_formats:
validation_results["content_format_score"] = 80.0
validation_results["strengths"].append("Facebook content formats optimized")
else:
validation_results["quality_issues"].append("Missing Facebook content format optimization")
validation_results["recommendations"].append("Add Facebook-specific content format strategies")
# Validate audience targeting
audience_targeting = persona_data.get("facebook_audience_targeting", {})
if audience_targeting:
validation_results["audience_targeting_score"] = 75.0
validation_results["strengths"].append("Facebook audience targeting strategies present")
else:
validation_results["quality_issues"].append("Missing Facebook audience targeting")
validation_results["recommendations"].append("Add Facebook-specific audience targeting strategies")
# Validate community building
community_building = persona_data.get("facebook_community_building", {})
if community_building:
validation_results["community_building_score"] = 85.0
validation_results["strengths"].append("Facebook community building strategies defined")
else:
validation_results["quality_issues"].append("Missing Facebook community building strategies")
validation_results["recommendations"].append("Add Facebook-specific community building tactics")
# Recalculate overall quality score
validation_results["quality_score"] = (
validation_results["completeness_score"] * 0.2 +
validation_results["facebook_optimization_score"] * 0.25 +
validation_results["engagement_strategy_score"] * 0.2 +
validation_results["content_format_score"] * 0.15 +
validation_results["audience_targeting_score"] * 0.1 +
validation_results["community_building_score"] * 0.1
)
# Add validation timestamp
validation_results["validation_timestamp"] = datetime.utcnow().isoformat()
logger.info(f"Facebook persona validation completed: Quality Score: {validation_results['quality_score']:.1f}%")
return validation_results
except Exception as e:
logger.error(f"Error validating Facebook persona: {str(e)}")
return {
"is_valid": False,
"quality_score": 0.0,
"error": f"Validation failed: {str(e)}"
}
def optimize_for_facebook_algorithm(self, persona_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Optimize Facebook persona data for maximum algorithm performance.
Args:
persona_data: Facebook persona data to optimize
Returns:
Optimized Facebook persona data
"""
try:
logger.info("Optimizing Facebook persona for algorithm performance")
# Get optimization strategies
optimization_strategies = self.optimization.get_facebook_optimization_strategies()
# Apply algorithm optimization
optimized_persona = persona_data.copy()
# Add comprehensive algorithm optimization
optimized_persona["algorithm_optimization"] = {
"engagement_optimization": optimization_strategies["algorithm_optimization"]["engagement_optimization"],
"content_quality_optimization": optimization_strategies["algorithm_optimization"]["content_quality_optimization"],
"timing_optimization": optimization_strategies["algorithm_optimization"]["timing_optimization"],
"audience_targeting_optimization": optimization_strategies["algorithm_optimization"]["audience_targeting_optimization"]
}
# Add engagement strategies
optimized_persona["engagement_strategies"] = {
"community_building": optimization_strategies["engagement_strategies"]["community_building"],
"content_engagement": optimization_strategies["engagement_strategies"]["content_engagement"],
"conversion_optimization": optimization_strategies["engagement_strategies"]["conversion_optimization"]
}
# Add content format optimization
optimized_persona["content_formats"] = optimization_strategies["content_formats"]
# Add audience targeting optimization
optimized_persona["audience_targeting"] = optimization_strategies["audience_targeting"]
# Add community building optimization
optimized_persona["community_building"] = optimization_strategies["community_building"]
# Add optimization metadata
total_strategies = 0
for category_name, category_data in optimization_strategies.items():
if isinstance(category_data, dict):
for strategy_name, strategies in category_data.items():
if isinstance(strategies, list):
total_strategies += len(strategies)
elif isinstance(strategies, dict):
# Handle nested dictionaries
for sub_strategy_name, sub_strategies in strategies.items():
if isinstance(sub_strategies, list):
total_strategies += len(sub_strategies)
else:
total_strategies += 1
else:
total_strategies += 1
elif isinstance(category_data, list):
total_strategies += len(category_data)
else:
total_strategies += 1
optimized_persona["optimization_metadata"] = {
"optimization_applied": True,
"optimization_timestamp": datetime.utcnow().isoformat(),
"optimization_categories": list(optimization_strategies.keys()),
"total_optimization_strategies": total_strategies
}
logger.info("✅ Facebook persona algorithm optimization completed successfully")
return optimized_persona
except Exception as e:
logger.error(f"Error optimizing Facebook persona: {str(e)}")
return persona_data # Return original data if optimization fails
def _get_enhanced_facebook_schema(self) -> Dict[str, Any]:
"""Get enhanced Facebook persona schema for Gemini structured response with improved JSON parsing reliability."""
return {
"type": "object",
"description": "Facebook-optimized persona data structure for community engagement and algorithm optimization",
"properties": {
"persona_name": {
"type": "string",
"description": "Name of the Facebook-optimized persona (e.g., 'Community Builder', 'Social Connector')",
"minLength": 3,
"maxLength": 50
},
"archetype": {
"type": "string",
"description": "Persona archetype for Facebook (e.g., 'The Community Catalyst', 'The Social Storyteller')",
"minLength": 5,
"maxLength": 50
},
"core_belief": {
"type": "string",
"description": "Core belief driving the Facebook persona (e.g., 'Building authentic connections through shared experiences')",
"minLength": 10,
"maxLength": 200
},
"facebook_algorithm_optimization": {
"type": "object",
"description": "Facebook algorithm optimization strategies",
"properties": {
"engagement_optimization": {
"type": "array",
"items": {"type": "string"},
"description": "Strategies for optimizing Facebook engagement (3-8 strategies)",
"minItems": 3,
"maxItems": 8
},
"content_quality_optimization": {
"type": "array",
"items": {"type": "string"},
"description": "Strategies for optimizing content quality on Facebook (3-8 strategies)",
"minItems": 3,
"maxItems": 8
},
"timing_optimization": {
"type": "array",
"items": {"type": "string"},
"description": "Strategies for optimizing posting timing on Facebook (3-8 strategies)",
"minItems": 3,
"maxItems": 8
},
"audience_targeting_optimization": {
"type": "array",
"items": {"type": "string"},
"description": "Strategies for optimizing audience targeting on Facebook (3-8 strategies)",
"minItems": 3,
"maxItems": 8
}
}
},
"facebook_engagement_strategies": {
"type": "object",
"description": "Facebook-specific engagement strategies",
"properties": {
"community_building": {
"type": "array",
"items": {"type": "string"},
"description": "Community building strategies for Facebook"
},
"content_engagement": {
"type": "array",
"items": {"type": "string"},
"description": "Content engagement strategies for Facebook"
},
"conversion_optimization": {
"type": "array",
"items": {"type": "string"},
"description": "Conversion optimization strategies for Facebook"
}
}
},
"facebook_content_formats": {
"type": "object",
"description": "Facebook content format optimizations",
"properties": {
"text_posts": {
"type": "object",
"description": "Text post optimization for Facebook",
"properties": {
"optimal_length": {"type": "string"},
"structure_guidelines": {"type": "array", "items": {"type": "string"}},
"hook_strategies": {"type": "array", "items": {"type": "string"}}
}
},
"image_posts": {
"type": "object",
"description": "Image post optimization for Facebook",
"properties": {
"image_guidelines": {"type": "array", "items": {"type": "string"}},
"caption_strategies": {"type": "array", "items": {"type": "string"}}
}
},
"video_posts": {
"type": "object",
"description": "Video post optimization for Facebook",
"properties": {
"video_length_guidelines": {"type": "array", "items": {"type": "string"}},
"engagement_hooks": {"type": "array", "items": {"type": "string"}}
}
},
"carousel_posts": {
"type": "object",
"description": "Carousel post optimization for Facebook",
"properties": {
"slide_structure": {"type": "array", "items": {"type": "string"}},
"storytelling_flow": {"type": "array", "items": {"type": "string"}}
}
}
}
},
"facebook_audience_targeting": {
"type": "object",
"description": "Facebook audience targeting strategies",
"properties": {
"demographic_targeting": {
"type": "array",
"items": {"type": "string"},
"description": "Demographic targeting strategies for Facebook"
},
"interest_targeting": {
"type": "array",
"items": {"type": "string"},
"description": "Interest targeting strategies for Facebook"
},
"behavioral_targeting": {
"type": "array",
"items": {"type": "string"},
"description": "Behavioral targeting strategies for Facebook"
}
}
},
"facebook_community_building": {
"type": "object",
"description": "Facebook community building strategies",
"properties": {
"group_management": {
"type": "array",
"items": {"type": "string"},
"description": "Facebook Group management strategies"
},
"event_management": {
"type": "array",
"items": {"type": "string"},
"description": "Facebook Event management strategies"
},
"live_streaming": {
"type": "array",
"items": {"type": "string"},
"description": "Facebook Live streaming strategies"
}
}
},
"confidence_score": {
"type": "number",
"description": "Confidence score for the Facebook persona (0-100)",
"minimum": 0,
"maximum": 100
}
},
"required": [
"persona_name",
"archetype",
"core_belief",
"facebook_algorithm_optimization",
"facebook_engagement_strategies",
"confidence_score"
],
"additionalProperties": False
}