Base code
This commit is contained in:
360
backend/services/wavespeed/kling_animation.py
Normal file
360
backend/services/wavespeed/kling_animation.py
Normal file
@@ -0,0 +1,360 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import base64
|
||||
import json
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
from services.llm_providers.main_text_generation import llm_text_gen
|
||||
from utils.logger_utils import get_service_logger
|
||||
|
||||
from .client import WaveSpeedClient
|
||||
|
||||
try:
|
||||
import imghdr
|
||||
except ModuleNotFoundError: # Python 3.13 removed imghdr
|
||||
imghdr = None
|
||||
|
||||
logger = get_service_logger("wavespeed.kling_animation")
|
||||
|
||||
KLING_MODEL_PATH = "kwaivgi/kling-v2.5-turbo-std/image-to-video"
|
||||
KLING_MODEL_5S = "kling-v2.5-turbo-std-5s"
|
||||
KLING_MODEL_10S = "kling-v2.5-turbo-std-10s"
|
||||
MAX_IMAGE_BYTES = 10 * 1024 * 1024 # 10 MB limit per docs
|
||||
|
||||
|
||||
def _detect_image_mime(image_bytes: bytes) -> str:
|
||||
if imghdr:
|
||||
detected = imghdr.what(None, h=image_bytes)
|
||||
if detected == "jpeg":
|
||||
return "image/jpeg"
|
||||
if detected == "png":
|
||||
return "image/png"
|
||||
if detected == "gif":
|
||||
return "image/gif"
|
||||
|
||||
header = image_bytes[:8]
|
||||
if header.startswith(b"\x89PNG"):
|
||||
return "image/png"
|
||||
if header[:2] == b"\xff\xd8":
|
||||
return "image/jpeg"
|
||||
if header[:3] in (b"GIF", b"GIF"):
|
||||
return "image/gif"
|
||||
|
||||
return "image/png"
|
||||
|
||||
|
||||
def _build_fallback_prompt(scene_data: Dict[str, Any], story_context: Dict[str, Any]) -> str:
|
||||
title = (scene_data.get("title") or "Scene").strip()
|
||||
description = (scene_data.get("description") or "").strip()
|
||||
image_prompt = (scene_data.get("image_prompt") or "").strip()
|
||||
tone = (story_context.get("story_tone") or "story").strip()
|
||||
setting = (story_context.get("story_setting") or "the scene").strip()
|
||||
|
||||
parts = [
|
||||
f"{title} cinematic motion shot.",
|
||||
description[:220] if description else "",
|
||||
f"Camera glides with subtle parallax over {setting}.",
|
||||
f"Maintain a {tone} mood with natural lighting accents.",
|
||||
f"Honor the original illustration details: {image_prompt[:200]}." if image_prompt else "",
|
||||
"5-second sequence, gentle push-in, flowing cloth and atmospheric particles.",
|
||||
]
|
||||
fallback_prompt = " ".join(filter(None, parts))
|
||||
return fallback_prompt.strip()
|
||||
|
||||
|
||||
def _load_llm_json_response(response_text: Any) -> Dict[str, Any]:
|
||||
"""Normalize responses from llm_text_gen (dict or JSON string)."""
|
||||
if isinstance(response_text, dict):
|
||||
return response_text
|
||||
if isinstance(response_text, str):
|
||||
return json.loads(response_text)
|
||||
raise ValueError(f"Unexpected response type: {type(response_text)}")
|
||||
|
||||
|
||||
def _generate_text_prompt(
|
||||
*,
|
||||
prompt: str,
|
||||
system_prompt: str,
|
||||
user_id: str,
|
||||
fallback_prompt: str,
|
||||
) -> str:
|
||||
"""Fallback text generation when structured JSON parsing fails."""
|
||||
try:
|
||||
response = llm_text_gen(
|
||||
prompt=prompt.strip(),
|
||||
system_prompt=system_prompt,
|
||||
user_id=user_id,
|
||||
)
|
||||
except HTTPException as exc:
|
||||
if exc.status_code == 429:
|
||||
raise
|
||||
logger.warning(
|
||||
"[AnimateScene] Text-mode prompt generation failed (%s). Using deterministic fallback.",
|
||||
exc.detail,
|
||||
)
|
||||
return fallback_prompt
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"[AnimateScene] Unexpected error generating text prompt: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
return fallback_prompt
|
||||
|
||||
if isinstance(response, dict):
|
||||
candidates = [
|
||||
response.get("animation_prompt"),
|
||||
response.get("prompt"),
|
||||
response.get("text"),
|
||||
]
|
||||
for candidate in candidates:
|
||||
if isinstance(candidate, str) and candidate.strip():
|
||||
return candidate.strip()
|
||||
# As a last resort, stringify the dict
|
||||
response_text = json.dumps(response, ensure_ascii=False)
|
||||
else:
|
||||
response_text = str(response)
|
||||
|
||||
cleaned = response_text.strip()
|
||||
return cleaned or fallback_prompt
|
||||
|
||||
|
||||
def generate_animation_prompt(
|
||||
scene_data: Dict[str, Any],
|
||||
story_context: Dict[str, Any],
|
||||
user_id: str,
|
||||
) -> str:
|
||||
"""
|
||||
Generate an animation-focused prompt using llm_text_gen, falling back to a deterministic prompt if LLM fails.
|
||||
"""
|
||||
fallback_prompt = _build_fallback_prompt(scene_data, story_context)
|
||||
system_prompt = (
|
||||
"You are an expert cinematic animation director. "
|
||||
"You transform static illustrated scenes into short cinematic motion clips. "
|
||||
"Describe motion, camera behavior, atmosphere, and pacing."
|
||||
)
|
||||
|
||||
description = scene_data.get("description", "")
|
||||
image_prompt = scene_data.get("image_prompt", "")
|
||||
title = scene_data.get("title", "")
|
||||
tone = story_context.get("story_tone") or story_context.get("story_tone", "")
|
||||
setting = story_context.get("story_setting") or story_context.get("story_setting", "")
|
||||
|
||||
prompt = f"""
|
||||
Create a concise animation prompt (2-3 sentences) for a 5-second cinematic clip.
|
||||
|
||||
Scene Title: {title}
|
||||
Description: {description}
|
||||
Existing Image Prompt: {image_prompt}
|
||||
Story Tone: {tone}
|
||||
Setting: {setting}
|
||||
|
||||
Focus on:
|
||||
- Motion of characters/objects
|
||||
- Camera movement (pan, zoom, dolly, orbit)
|
||||
- Atmosphere, lighting, and emotion
|
||||
- Timing cues appropriate for a {tone or "story"} scene
|
||||
|
||||
Respond with JSON: {{"animation_prompt": "<prompt>"}}
|
||||
"""
|
||||
|
||||
try:
|
||||
response = llm_text_gen(
|
||||
prompt=prompt.strip(),
|
||||
system_prompt=system_prompt,
|
||||
user_id=user_id,
|
||||
json_struct={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"animation_prompt": {
|
||||
"type": "string",
|
||||
"description": "A cinematic motion prompt for the WaveSpeed image-to-video model.",
|
||||
}
|
||||
},
|
||||
"required": ["animation_prompt"],
|
||||
},
|
||||
)
|
||||
structured = _load_llm_json_response(response)
|
||||
animation_prompt = structured.get("animation_prompt")
|
||||
if not animation_prompt or not isinstance(animation_prompt, str):
|
||||
raise ValueError("Missing animation_prompt in structured response")
|
||||
cleaned_prompt = animation_prompt.strip()
|
||||
if not cleaned_prompt:
|
||||
raise ValueError("animation_prompt is empty after trimming")
|
||||
return cleaned_prompt
|
||||
except HTTPException as exc:
|
||||
if exc.status_code == 429:
|
||||
raise
|
||||
logger.warning(
|
||||
"[AnimateScene] Structured LLM prompt generation failed (%s). Falling back to text parsing.",
|
||||
exc.detail,
|
||||
)
|
||||
return _generate_text_prompt(
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
user_id=user_id,
|
||||
fallback_prompt=fallback_prompt,
|
||||
)
|
||||
except (json.JSONDecodeError, ValueError, KeyError) as exc:
|
||||
logger.warning(
|
||||
"[AnimateScene] Failed to parse structured animation prompt (%s). Falling back to text parsing.",
|
||||
exc,
|
||||
)
|
||||
return _generate_text_prompt(
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
user_id=user_id,
|
||||
fallback_prompt=fallback_prompt,
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"[AnimateScene] Unexpected error generating animation prompt: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
return fallback_prompt
|
||||
|
||||
|
||||
def animate_scene_image(
|
||||
*,
|
||||
image_bytes: bytes,
|
||||
scene_data: Dict[str, Any],
|
||||
story_context: Dict[str, Any],
|
||||
user_id: str,
|
||||
duration: int = 5,
|
||||
guidance_scale: float = 0.5,
|
||||
negative_prompt: Optional[str] = None,
|
||||
client: Optional[WaveSpeedClient] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Animate a scene image using WaveSpeed Kling v2.5 Turbo Std.
|
||||
Returns dict with video bytes, prompt used, model name, duration, and cost.
|
||||
"""
|
||||
if duration not in (5, 10):
|
||||
raise HTTPException(status_code=400, detail="Duration must be 5 or 10 seconds for scene animation.")
|
||||
|
||||
if len(image_bytes) > MAX_IMAGE_BYTES:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail="Scene image exceeds 10MB limit required by WaveSpeed."
|
||||
)
|
||||
|
||||
guidance_scale = max(0.0, min(1.0, guidance_scale))
|
||||
animation_prompt = generate_animation_prompt(scene_data, story_context, user_id)
|
||||
image_b64 = base64.b64encode(image_bytes).decode("utf-8")
|
||||
|
||||
payload = {
|
||||
"duration": duration,
|
||||
"guidance_scale": guidance_scale,
|
||||
"image": image_b64,
|
||||
"prompt": animation_prompt,
|
||||
}
|
||||
if negative_prompt:
|
||||
payload["negative_prompt"] = negative_prompt.strip()
|
||||
|
||||
client = client or WaveSpeedClient()
|
||||
prediction_id = client.submit_image_to_video(KLING_MODEL_PATH, payload)
|
||||
try:
|
||||
result = client.poll_until_complete(prediction_id, timeout_seconds=240, interval_seconds=1.0)
|
||||
except HTTPException as exc:
|
||||
detail = exc.detail or {}
|
||||
if isinstance(detail, dict):
|
||||
detail.setdefault("prediction_id", prediction_id)
|
||||
detail.setdefault("resume_available", True)
|
||||
detail.setdefault("message", "WaveSpeed request is still processing. Use resume endpoint to fetch the video once ready.")
|
||||
raise HTTPException(status_code=exc.status_code, detail=detail)
|
||||
|
||||
outputs = result.get("outputs") or []
|
||||
if not outputs:
|
||||
raise HTTPException(status_code=502, detail="WaveSpeed completed but returned no outputs.")
|
||||
|
||||
video_url = outputs[0]
|
||||
video_response = requests.get(video_url, timeout=60)
|
||||
if video_response.status_code != 200:
|
||||
raise HTTPException(
|
||||
status_code=502,
|
||||
detail={
|
||||
"error": "Failed to download animation video",
|
||||
"status_code": video_response.status_code,
|
||||
"response": video_response.text[:200],
|
||||
},
|
||||
)
|
||||
|
||||
model_name = KLING_MODEL_5S if duration == 5 else KLING_MODEL_10S
|
||||
cost = 0.21 if duration == 5 else 0.42
|
||||
|
||||
return {
|
||||
"video_bytes": video_response.content,
|
||||
"prompt": animation_prompt,
|
||||
"duration": duration,
|
||||
"model_name": model_name,
|
||||
"cost": cost,
|
||||
"provider": "wavespeed",
|
||||
"source_video_url": video_url,
|
||||
"prediction_id": prediction_id,
|
||||
}
|
||||
|
||||
|
||||
def resume_scene_animation(
|
||||
*,
|
||||
prediction_id: str,
|
||||
duration: int,
|
||||
user_id: str,
|
||||
client: Optional[WaveSpeedClient] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Resume a previously submitted animation by fetching the completed result.
|
||||
"""
|
||||
if duration not in (5, 10):
|
||||
raise HTTPException(status_code=400, detail="Duration must be 5 or 10 seconds for scene animation.")
|
||||
|
||||
client = client or WaveSpeedClient()
|
||||
result = client.get_prediction_result(prediction_id, timeout=120)
|
||||
status = result.get("status")
|
||||
if status != "completed":
|
||||
raise HTTPException(
|
||||
status_code=409,
|
||||
detail={
|
||||
"error": "WaveSpeed prediction is not completed yet",
|
||||
"prediction_id": prediction_id,
|
||||
"status": status,
|
||||
},
|
||||
)
|
||||
|
||||
outputs = result.get("outputs") or []
|
||||
if not outputs:
|
||||
raise HTTPException(status_code=502, detail="WaveSpeed completed but returned no outputs.")
|
||||
|
||||
video_url = outputs[0]
|
||||
video_response = requests.get(video_url, timeout=120)
|
||||
if video_response.status_code != 200:
|
||||
raise HTTPException(
|
||||
status_code=502,
|
||||
detail={
|
||||
"error": "Failed to download animation video during resume",
|
||||
"status_code": video_response.status_code,
|
||||
"response": video_response.text[:200],
|
||||
"prediction_id": prediction_id,
|
||||
},
|
||||
)
|
||||
|
||||
animation_prompt = result.get("prompt") or ""
|
||||
model_name = KLING_MODEL_5S if duration == 5 else KLING_MODEL_10S
|
||||
cost = 0.21 if duration == 5 else 0.42
|
||||
|
||||
logger.info("[AnimateScene] Resumed download for prediction=%s", prediction_id)
|
||||
|
||||
return {
|
||||
"video_bytes": video_response.content,
|
||||
"prompt": animation_prompt,
|
||||
"duration": duration,
|
||||
"model_name": model_name,
|
||||
"cost": cost,
|
||||
"provider": "wavespeed",
|
||||
"source_video_url": video_url,
|
||||
"prediction_id": prediction_id,
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user