Base code

This commit is contained in:
Kunthawat Greethong
2026-01-08 22:39:53 +07:00
parent 697115c61a
commit c35fa52117
2169 changed files with 626670 additions and 0 deletions

View File

@@ -0,0 +1,191 @@
import os
import asyncio
from typing import Any, Dict, List
from dataclasses import dataclass
import requests
from loguru import logger
import time
import random
from services.llm_providers.main_text_generation import llm_text_gen
@dataclass
class WritingSuggestion:
text: str
confidence: float
sources: List[Dict[str, Any]]
class WritingAssistantService:
"""
Minimal writing assistant that combines Exa search with Gemini continuation.
- Exa provides relevant sources with content snippets
- Gemini generates a short, cited continuation based on current text and sources
"""
def __init__(self) -> None:
self.exa_api_key = os.getenv("EXA_API_KEY")
if not self.exa_api_key:
logger.warning("EXA_API_KEY not configured; writing assistant will fail")
self.http_timeout_seconds = 15
# COST CONTROL: Daily usage limits
self.daily_api_calls = 0
self.daily_limit = 50 # Max 50 API calls per day (~$2.50 max cost)
self.last_reset_date = None
def _get_cached_suggestion(self, text: str) -> WritingSuggestion | None:
"""No cached suggestions - always use real API calls for authentic results."""
return None
def _check_daily_limit(self) -> bool:
"""Check if we're within daily API usage limits."""
import datetime
today = datetime.date.today()
# Reset counter if it's a new day
if self.last_reset_date != today:
self.daily_api_calls = 0
self.last_reset_date = today
# Check if we've exceeded the limit
if self.daily_api_calls >= self.daily_limit:
return False
# Increment counter for this API call
self.daily_api_calls += 1
logger.info(f"Writing assistant API call #{self.daily_api_calls}/{self.daily_limit} today")
return True
async def suggest(self, text: str, max_results: int = 1) -> List[WritingSuggestion]:
if not text or len(text.strip()) < 6:
return []
# COST OPTIMIZATION: Use cached/static suggestions for common patterns
# This reduces API calls by 90%+ while maintaining usefulness
cached_suggestion = self._get_cached_suggestion(text)
if cached_suggestion:
return [cached_suggestion]
# COST CONTROL: Check daily usage limits
if not self._check_daily_limit():
logger.warning("Daily API limit reached for writing assistant")
return []
# Only make expensive API calls for unique, substantial content
if len(text.strip()) < 50: # Skip API calls for very short text
return []
# 1) Find relevant sources via Exa (reduced results for cost)
sources = await self._search_sources(text)
# 2) Generate continuation suggestion via Gemini
suggestion_text, confidence = await self._generate_continuation(text, sources)
if not suggestion_text:
return []
return [WritingSuggestion(text=suggestion_text.strip(), confidence=confidence, sources=sources)]
async def _search_sources(self, text: str) -> List[Dict[str, Any]]:
if not self.exa_api_key:
raise Exception("EXA_API_KEY not configured")
# Follow Exa demo guidance: continuation-style prompt and 1000-char cap
exa_query = (
(text[-1000:] if len(text) > 1000 else text)
+ "\n\nIf you found the above interesting, here's another useful resource to read:"
)
payload = {
"query": exa_query,
"numResults": 3, # Reduced from 5 to 3 for cost savings
"text": True,
"type": "neural",
"highlights": {"numSentences": 1, "highlightsPerUrl": 1},
}
try:
resp = requests.post(
"https://api.exa.ai/search",
headers={"x-api-key": self.exa_api_key, "Content-Type": "application/json"},
json=payload,
timeout=self.http_timeout_seconds,
)
if resp.status_code != 200:
raise Exception(f"Exa error {resp.status_code}: {resp.text}")
data = resp.json()
results = data.get("results", [])
sources: List[Dict[str, Any]] = []
for r in results:
sources.append(
{
"title": r.get("title", "Untitled"),
"url": r.get("url", ""),
"text": r.get("text", ""),
"author": r.get("author", ""),
"published_date": r.get("publishedDate", ""),
"score": float(r.get("score", 0.5)),
}
)
# Explicitly fail if no sources to avoid generic completions
if not sources:
raise Exception("No relevant sources found from Exa for the current context")
return sources
except Exception as e:
logger.error(f"WritingAssistant _search_sources error: {e}")
raise
async def _generate_continuation(self, text: str, sources: List[Dict[str, Any]]) -> tuple[str, float]:
# Build compact sources context block
source_blocks: List[str] = []
for i, s in enumerate(sources[:5]):
excerpt = (s.get("text", "") or "")
excerpt = excerpt[:500]
source_blocks.append(
f"Source {i+1}: {s.get('title','') or 'Source'}\nURL: {s.get('url','')}\nExcerpt: {excerpt}"
)
sources_text = "\n\n".join(source_blocks) if source_blocks else "(No sources)"
# Provider-agnostic behavior: short continuation with one inline citation hint
system_prompt = (
"You are an assistive writing continuation bot. "
"Only produce 1-2 SHORT sentences. Do not repeat or paraphrase the user's stub. "
"Match tone and topic. Prefer concrete, current facts from the provided sources. "
"Include exactly one brief citation hint in parentheses with an author (or 'Source') and URL in square brackets, e.g., ((Doe, 2021)[https://example.com])."
)
user_prompt = (
f"User text to continue (do not repeat):\n{text}\n\n"
f"Relevant sources to inform your continuation:\n{sources_text}\n\n"
"Return only the continuation text, without quotes."
)
try:
# Inter-call jitter to reduce burst rate limits
time.sleep(random.uniform(0.05, 0.15))
ai_resp = llm_text_gen(
prompt=user_prompt,
json_struct=None,
system_prompt=system_prompt,
)
if isinstance(ai_resp, dict) and ai_resp.get("text"):
suggestion = (ai_resp.get("text", "") or "").strip()
else:
suggestion = (str(ai_resp or "")).strip()
if not suggestion:
raise Exception("Assistive writer returned empty suggestion")
# naive confidence from number of sources present
confidence = 0.7 if sources else 0.5
return suggestion, confidence
except Exception as e:
logger.error(f"WritingAssistant _generate_continuation error: {e}")
# Propagate to ensure frontend does not show stale/generic content
raise