Base code

This commit is contained in:
Kunthawat Greethong
2026-01-08 22:39:53 +07:00
parent 697115c61a
commit c35fa52117
2169 changed files with 626670 additions and 0 deletions

View File

@@ -0,0 +1,184 @@
# AI Analysis Functionality Extraction Summary
## 🎯 **Overview**
Successfully extracted AI analysis functionality from the monolithic `enhanced_strategy_service.py` file into focused, modular services within the `ai_analysis/` module.
## ✅ **Completed Extraction**
### **1. AI Recommendations Service** (`ai_analysis/ai_recommendations.py`)
**Extracted Methods:**
- `_generate_comprehensive_ai_recommendations``generate_comprehensive_recommendations`
- `_generate_specialized_recommendations``_generate_specialized_recommendations`
- `_call_ai_service``_call_ai_service`
- `_parse_ai_response``_parse_ai_response`
- `_get_fallback_recommendations``_get_fallback_recommendations`
- `_get_latest_ai_analysis``get_latest_ai_analysis`
**Key Features:**
- Comprehensive AI recommendation generation using 5 specialized prompts
- Individual analysis result storage in database
- Strategy enhancement with AI analysis data
- Fallback recommendations for error handling
- Latest AI analysis retrieval
### **2. Prompt Engineering Service** (`ai_analysis/prompt_engineering.py`)
**Extracted Methods:**
- `_create_specialized_prompt``create_specialized_prompt`
**Key Features:**
- Specialized prompt creation for 5 analysis types:
- Comprehensive Strategy
- Audience Intelligence
- Competitive Intelligence
- Performance Optimization
- Content Calendar Optimization
- Dynamic prompt generation based on strategy data
- Structured prompt templates with requirements
### **3. Quality Validation Service** (`ai_analysis/quality_validation.py`)
**Extracted Methods:**
- `_calculate_strategic_scores``calculate_strategic_scores`
- `_extract_market_positioning``extract_market_positioning`
- `_extract_competitive_advantages``extract_competitive_advantages`
- `_extract_strategic_risks``extract_strategic_risks`
- `_extract_opportunity_analysis``extract_opportunity_analysis`
**New Features Added:**
- `validate_ai_response_quality` - AI response quality assessment
- `assess_strategy_quality` - Overall strategy quality evaluation
## 📊 **Code Metrics**
### **Before Extraction**
- **Monolithic File**: 2120 lines
- **AI Analysis Methods**: ~400 lines scattered throughout
- **Complexity**: Mixed with other functionality
### **After Extraction**
- **AI Recommendations Service**: 180 lines (focused functionality)
- **Prompt Engineering Service**: 150 lines (specialized prompts)
- **Quality Validation Service**: 120 lines (validation & analysis)
- **Total AI Analysis**: 450 lines in 3 focused modules
## 🔧 **Key Improvements**
### **1. Separation of Concerns**
- **AI Recommendations**: Handles recommendation generation and storage
- **Prompt Engineering**: Manages specialized prompt creation
- **Quality Validation**: Assesses AI responses and strategy quality
### **2. Modular Architecture**
- **Independent Services**: Each service can be developed and tested separately
- **Clear Interfaces**: Well-defined method signatures and responsibilities
- **Easy Integration**: Services work together through the core orchestration
### **3. Enhanced Functionality**
- **Quality Assessment**: Added AI response quality validation
- **Strategy Evaluation**: Added overall strategy quality assessment
- **Better Error Handling**: Improved fallback mechanisms
### **4. Maintainability**
- **Focused Modules**: Each module has a single responsibility
- **Clear Dependencies**: Explicit imports and service relationships
- **Easy Testing**: Individual services can be unit tested
## 🚀 **Benefits Achieved**
### **1. Code Organization**
- **Logical Grouping**: Related AI functionality is now grouped together
- **Clear Boundaries**: Each service has well-defined responsibilities
- **Easy Navigation**: Developers can quickly find specific AI functionality
### **2. Development Efficiency**
- **Parallel Development**: Teams can work on different AI services simultaneously
- **Focused Testing**: Each service can be tested independently
- **Rapid Iteration**: Changes to one service don't affect others
### **3. Scalability**
- **Easy Extension**: New AI analysis types can be added easily
- **Service Reuse**: AI services can be used by other parts of the system
- **Performance Optimization**: Each service can be optimized independently
### **4. Quality Assurance**
- **Better Testing**: Each service can have comprehensive unit tests
- **Quality Metrics**: Added validation and assessment capabilities
- **Error Handling**: Improved fallback and error recovery mechanisms
## 🔄 **Integration Status**
### **✅ Completed**
- [x] Extract AI recommendations functionality
- [x] Extract prompt engineering functionality
- [x] Extract quality validation functionality
- [x] Update core strategy service to use modular services
- [x] Test all imports and functionality
- [x] Verify complete router integration
### **🔄 Next Phase (Future)**
- [ ] Extract onboarding integration functionality
- [ ] Extract performance optimization functionality
- [ ] Extract health monitoring functionality
- [ ] Add comprehensive unit tests for AI analysis services
- [ ] Implement actual AI service integration
## 📋 **Service Dependencies**
### **AI Recommendations Service**
- **Depends on**: Prompt Engineering Service, Quality Validation Service
- **Provides**: Comprehensive AI recommendation generation
- **Used by**: Core Strategy Service
### **Prompt Engineering Service**
- **Depends on**: None (standalone)
- **Provides**: Specialized prompt creation
- **Used by**: AI Recommendations Service
### **Quality Validation Service**
- **Depends on**: None (standalone)
- **Provides**: Quality assessment and strategic analysis
- **Used by**: AI Recommendations Service, Core Strategy Service
## 🎯 **Impact Assessment**
### **Positive Impact**
- **✅ Reduced Complexity**: AI functionality is now organized into focused modules
- **✅ Improved Maintainability**: Each service has clear responsibilities
- **✅ Enhanced Functionality**: Added quality assessment capabilities
- **✅ Better Organization**: Logical grouping of related functionality
### **Risk Mitigation**
- **✅ Backward Compatibility**: Same public API maintained
- **✅ Gradual Migration**: Services can be enhanced incrementally
- **✅ Testing**: All functionality verified working
- **✅ Documentation**: Clear service interfaces and responsibilities
## 📋 **Recommendations**
### **1. Immediate Actions**
- **✅ Complete**: AI analysis functionality extraction
- **✅ Complete**: Service integration and testing
- **✅ Complete**: Quality assessment enhancements
### **2. Future Development**
- **Priority 1**: Extract onboarding integration functionality
- **Priority 2**: Extract performance optimization functionality
- **Priority 3**: Add comprehensive unit tests for AI services
- **Priority 4**: Implement actual AI service integration
### **3. Team Guidelines**
- **Service Boundaries**: Respect service responsibilities and interfaces
- **Testing**: Write unit tests for each AI analysis service
- **Documentation**: Document service interfaces and dependencies
- **Quality**: Use quality validation service for all AI responses
## 🎉 **Conclusion**
The AI analysis functionality extraction has been successfully completed with:
- **✅ Modular Structure**: 3 focused AI analysis services
- **✅ Enhanced Functionality**: Added quality assessment capabilities
- **✅ Clean Integration**: Seamless integration with core strategy service
- **✅ Future-Ready**: Extensible structure for continued development
The new modular AI analysis architecture provides a solid foundation for advanced AI functionality while maintaining all existing capabilities and improving code organization.

View File

@@ -0,0 +1,679 @@
# 🤖 AI Integration Plan for Content Planning System
## 📋 Current Status Analysis
### ❌ **Issues Identified**
1. **Hardcoded Values**: All AI services currently use simulated data instead of real AI calls
2. **Missing AI Integration**: No actual LLM calls in FastAPI services
3. **Unused AI Infrastructure**: Gemini provider exists but not integrated
4. **Missing AI Prompts**: Advanced prompts from legacy system not implemented
### ✅ **Available AI Infrastructure**
1. **Gemini Provider**: `backend/llm_providers/gemini_provider.py`
2. **Main Text Generation**: `backend/llm_providers/main_text_generation.py`
3. **API Key Management**: `backend/services/api_key_manager.py`
4. **AI Prompts**: Available in `CONTENT_GAP_ANALYSIS_DEEP_DIVE.md`
## 🎯 **AI Integration Strategy**
### **Phase 1: Core AI Integration (Week 1)**
#### 1.1 **AI Engine Service Enhancement**
**File**: `backend/services/content_gap_analyzer/ai_engine_service.py`
**Current Issues**:
- All methods use hardcoded responses
- No actual AI calls implemented
- Missing integration with Gemini provider
**Implementation Plan**:
```python
# Add imports
from backend.llm_providers.main_text_generation import llm_text_gen
from backend.llm_providers.gemini_provider import gemini_structured_json_response
# Replace hardcoded responses with AI calls
async def analyze_content_gaps(self, analysis_summary: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze content gaps using AI insights."""
try:
prompt = f"""
As an expert SEO content strategist, analyze this comprehensive content gap analysis data and provide actionable insights:
TARGET ANALYSIS:
- Website: {analysis_summary.get('target_url', 'N/A')}
- Industry: {analysis_summary.get('industry', 'N/A')}
- SERP Opportunities: {analysis_summary.get('serp_opportunities', 0)} keywords not ranking
- Keyword Expansion: {analysis_summary.get('expanded_keywords_count', 0)} additional keywords identified
- Competitors Analyzed: {analysis_summary.get('competitors_analyzed', 0)} websites
DOMINANT CONTENT THEMES:
{json.dumps(analysis_summary.get('dominant_themes', {}), indent=2)}
PROVIDE:
1. Strategic Content Gap Analysis
2. Priority Content Recommendations (top 5)
3. Keyword Strategy Insights
4. Competitive Positioning Advice
5. Content Format Recommendations
6. Technical SEO Opportunities
7. Implementation Timeline (30/60/90 days)
Format as JSON with clear, actionable recommendations.
"""
# Use structured JSON response for better parsing
response = gemini_structured_json_response(
prompt=prompt,
schema={
"type": "object",
"properties": {
"strategic_insights": {
"type": "array",
"items": {
"type": "object",
"properties": {
"type": {"type": "string"},
"insight": {"type": "string"},
"confidence": {"type": "number"},
"priority": {"type": "string"},
"estimated_impact": {"type": "string"}
}
}
},
"content_recommendations": {
"type": "array",
"items": {
"type": "object",
"properties": {
"type": {"type": "string"},
"recommendation": {"type": "string"},
"priority": {"type": "string"},
"estimated_traffic": {"type": "string"},
"implementation_time": {"type": "string"}
}
}
},
"performance_predictions": {
"type": "object",
"properties": {
"estimated_traffic_increase": {"type": "string"},
"estimated_ranking_improvement": {"type": "string"},
"estimated_engagement_increase": {"type": "string"},
"estimated_conversion_increase": {"type": "string"},
"confidence_level": {"type": "string"}
}
}
}
}
)
return json.loads(response)
except Exception as e:
logger.error(f"Error in AI content gap analysis: {str(e)}")
return {}
```
#### 1.2 **Keyword Researcher AI Integration**
**File**: `backend/services/content_gap_analyzer/keyword_researcher.py`
**Implementation Plan**:
```python
# Add AI integration for keyword analysis
async def _analyze_keyword_trends(self, industry: str, target_keywords: Optional[List[str]] = None) -> Dict[str, Any]:
"""Analyze keyword trends using AI."""
try:
prompt = f"""
Analyze keyword opportunities for {industry} industry:
Target Keywords: {target_keywords or []}
Provide comprehensive keyword analysis including:
1. Search volume estimates
2. Competition levels
3. Trend analysis
4. Opportunity scoring
5. Content format recommendations
Format as structured JSON with detailed analysis.
"""
response = gemini_structured_json_response(
prompt=prompt,
schema={
"type": "object",
"properties": {
"trends": {
"type": "object",
"additionalProperties": {
"type": "object",
"properties": {
"search_volume": {"type": "number"},
"difficulty": {"type": "number"},
"trend": {"type": "string"},
"competition": {"type": "string"},
"intent": {"type": "string"},
"cpc": {"type": "number"}
}
}
},
"summary": {
"type": "object",
"properties": {
"total_keywords": {"type": "number"},
"high_volume_keywords": {"type": "number"},
"low_competition_keywords": {"type": "number"},
"trending_keywords": {"type": "number"}
}
}
}
}
)
return json.loads(response)
except Exception as e:
logger.error(f"Error analyzing keyword trends: {str(e)}")
return {}
```
#### 1.3 **Competitor Analyzer AI Integration**
**File**: `backend/services/content_gap_analyzer/competitor_analyzer.py`
**Implementation Plan**:
```python
# Add AI integration for competitor analysis
async def _evaluate_market_position(self, competitors: List[Dict[str, Any]], industry: str) -> Dict[str, Any]:
"""Evaluate market position using AI."""
try:
prompt = f"""
Analyze the market position of competitors in the {industry} industry:
Competitor Analyses:
{json.dumps(competitors, indent=2)}
Provide:
1. Market position analysis
2. Content gaps
3. Competitive advantages
4. Strategic positioning recommendations
Format as structured JSON with detailed analysis.
"""
response = gemini_structured_json_response(
prompt=prompt,
schema={
"type": "object",
"properties": {
"market_leader": {"type": "string"},
"content_leader": {"type": "string"},
"quality_leader": {"type": "string"},
"market_gaps": {
"type": "array",
"items": {"type": "string"}
},
"opportunities": {
"type": "array",
"items": {"type": "string"}
},
"competitive_advantages": {
"type": "array",
"items": {"type": "string"}
},
"strategic_recommendations": {
"type": "array",
"items": {
"type": "object",
"properties": {
"type": {"type": "string"},
"recommendation": {"type": "string"},
"priority": {"type": "string"},
"estimated_impact": {"type": "string"}
}
}
}
}
}
)
return json.loads(response)
except Exception as e:
logger.error(f"Error evaluating market position: {str(e)}")
return {}
```
### **Phase 2: Advanced AI Features (Week 2)**
#### 2.1 **Content Performance Prediction**
```python
async def predict_content_performance(self, content_data: Dict[str, Any]) -> Dict[str, Any]:
"""Predict content performance using AI."""
try:
prompt = f"""
Predict content performance based on the following data:
Content Data: {json.dumps(content_data, indent=2)}
Provide detailed performance predictions including:
1. Traffic predictions
2. Engagement predictions
3. Ranking predictions
4. Conversion predictions
5. Risk factors
6. Success factors
Format as structured JSON with confidence levels.
"""
response = gemini_structured_json_response(
prompt=prompt,
schema={
"type": "object",
"properties": {
"traffic_predictions": {
"type": "object",
"properties": {
"estimated_monthly_traffic": {"type": "string"},
"traffic_growth_rate": {"type": "string"},
"peak_traffic_month": {"type": "string"},
"confidence_level": {"type": "string"}
}
},
"engagement_predictions": {
"type": "object",
"properties": {
"estimated_time_on_page": {"type": "string"},
"estimated_bounce_rate": {"type": "string"},
"estimated_social_shares": {"type": "string"},
"estimated_comments": {"type": "string"},
"confidence_level": {"type": "string"}
}
},
"ranking_predictions": {
"type": "object",
"properties": {
"estimated_ranking_position": {"type": "string"},
"estimated_ranking_time": {"type": "string"},
"ranking_confidence": {"type": "string"},
"competition_level": {"type": "string"}
}
},
"conversion_predictions": {
"type": "object",
"properties": {
"estimated_conversion_rate": {"type": "string"},
"estimated_lead_generation": {"type": "string"},
"estimated_revenue_impact": {"type": "string"},
"confidence_level": {"type": "string"}
}
},
"risk_factors": {
"type": "array",
"items": {"type": "string"}
},
"success_factors": {
"type": "array",
"items": {"type": "string"}
}
}
}
)
return json.loads(response)
except Exception as e:
logger.error(f"Error in AI performance prediction: {str(e)}")
return {}
```
#### 2.2 **Strategic Intelligence Generation**
```python
async def generate_strategic_insights(self, analysis_data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Generate strategic insights using AI."""
try:
prompt = f"""
Generate strategic insights based on the following analysis data:
Analysis Data: {json.dumps(analysis_data, indent=2)}
Provide strategic insights covering:
1. Content strategy recommendations
2. Competitive positioning advice
3. Content optimization suggestions
4. Innovation opportunities
5. Risk mitigation strategies
Format as structured JSON with detailed insights.
"""
response = gemini_structured_json_response(
prompt=prompt,
schema={
"type": "object",
"properties": {
"strategic_insights": {
"type": "array",
"items": {
"type": "object",
"properties": {
"type": {"type": "string"},
"insight": {"type": "string"},
"reasoning": {"type": "string"},
"priority": {"type": "string"},
"estimated_impact": {"type": "string"},
"implementation_time": {"type": "string"}
}
}
}
}
}
)
result = json.loads(response)
return result.get('strategic_insights', [])
except Exception as e:
logger.error(f"Error generating AI strategic insights: {str(e)}")
return []
```
### **Phase 3: AI Prompt Optimization (Week 3)**
#### 3.1 **Enhanced AI Prompts**
Based on the deep dive analysis, implement these advanced prompts:
**Content Gap Analysis Prompt**:
```python
CONTENT_GAP_ANALYSIS_PROMPT = """
As an expert SEO content strategist, analyze this comprehensive content gap analysis data and provide actionable insights:
TARGET ANALYSIS:
- Website: {target_url}
- Industry: {industry}
- SERP Opportunities: {serp_opportunities} keywords not ranking
- Keyword Expansion: {expanded_keywords_count} additional keywords identified
- Competitors Analyzed: {competitors_analyzed} websites
DOMINANT CONTENT THEMES:
{dominant_themes}
PROVIDE:
1. Strategic Content Gap Analysis
2. Priority Content Recommendations (top 5)
3. Keyword Strategy Insights
4. Competitive Positioning Advice
5. Content Format Recommendations
6. Technical SEO Opportunities
7. Implementation Timeline (30/60/90 days)
Format as JSON with clear, actionable recommendations.
"""
```
**Market Position Analysis Prompt**:
```python
MARKET_POSITION_PROMPT = """
Analyze the market position of competitors in the {industry} industry:
Competitor Analyses:
{competitor_analyses}
Provide:
1. Market position analysis
2. Content gaps
3. Competitive advantages
4. Strategic positioning recommendations
Format as JSON with detailed analysis.
"""
```
**Keyword Analysis Prompt**:
```python
KEYWORD_ANALYSIS_PROMPT = """
Analyze keyword opportunities for {industry} industry:
Keyword Trends: {trend_analysis}
Search Intent: {intent_analysis}
Opportunities: {opportunities}
Provide:
1. High-priority keyword recommendations
2. Content format suggestions
3. Topic cluster development
4. Search intent optimization
Format as JSON with detailed analysis.
"""
```
### **Phase 4: AI Service Integration (Week 4)**
#### 4.1 **Create AI Service Manager**
**File**: `backend/services/ai_service_manager.py`
```python
"""
AI Service Manager
Centralized AI service management for content planning system.
"""
from typing import Dict, Any, List, Optional
from loguru import logger
import json
from backend.llm_providers.main_text_generation import llm_text_gen
from backend.llm_providers.gemini_provider import gemini_structured_json_response
class AIServiceManager:
"""Manages AI service interactions and prompt handling."""
def __init__(self):
"""Initialize AI service manager."""
self.logger = logger
self.prompts = self._load_prompts()
def _load_prompts(self) -> Dict[str, str]:
"""Load AI prompts from configuration."""
return {
'content_gap_analysis': CONTENT_GAP_ANALYSIS_PROMPT,
'market_position': MARKET_POSITION_PROMPT,
'keyword_analysis': KEYWORD_ANALYSIS_PROMPT,
'performance_prediction': PERFORMANCE_PREDICTION_PROMPT,
'strategic_insights': STRATEGIC_INSIGHTS_PROMPT
}
async def generate_content_gap_analysis(self, analysis_data: Dict[str, Any]) -> Dict[str, Any]:
"""Generate content gap analysis using AI."""
try:
prompt = self.prompts['content_gap_analysis'].format(**analysis_data)
response = gemini_structured_json_response(
prompt=prompt,
schema=CONTENT_GAP_ANALYSIS_SCHEMA
)
return json.loads(response)
except Exception as e:
self.logger.error(f"Error generating content gap analysis: {str(e)}")
return {}
async def generate_market_position_analysis(self, market_data: Dict[str, Any]) -> Dict[str, Any]:
"""Generate market position analysis using AI."""
try:
prompt = self.prompts['market_position'].format(**market_data)
response = gemini_structured_json_response(
prompt=prompt,
schema=MARKET_POSITION_SCHEMA
)
return json.loads(response)
except Exception as e:
self.logger.error(f"Error generating market position analysis: {str(e)}")
return {}
async def generate_keyword_analysis(self, keyword_data: Dict[str, Any]) -> Dict[str, Any]:
"""Generate keyword analysis using AI."""
try:
prompt = self.prompts['keyword_analysis'].format(**keyword_data)
response = gemini_structured_json_response(
prompt=prompt,
schema=KEYWORD_ANALYSIS_SCHEMA
)
return json.loads(response)
except Exception as e:
self.logger.error(f"Error generating keyword analysis: {str(e)}")
return {}
```
#### 4.2 **Update All Services to Use AI Manager**
```python
# In each service file, replace hardcoded responses with AI calls
from services.ai_service_manager import AIServiceManager
class AIEngineService:
def __init__(self):
self.ai_manager = AIServiceManager()
logger.info("AIEngineService initialized")
async def analyze_content_gaps(self, analysis_summary: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze content gaps using AI insights."""
return await self.ai_manager.generate_content_gap_analysis(analysis_summary)
async def analyze_market_position(self, market_data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze market position using AI insights."""
return await self.ai_manager.generate_market_position_analysis(market_data)
```
## 📊 **Implementation Timeline**
### **Week 1: Core AI Integration** ✅ **COMPLETED**
- [x] Replace hardcoded responses in AI Engine Service
- [x] Integrate Gemini provider calls
- [x] Implement basic AI prompts
- [x] Test AI functionality
### **Week 2: Advanced AI Features** ✅ **COMPLETED**
- [x] Implement content performance prediction
- [x] Add strategic intelligence generation
- [x] Create comprehensive AI schemas
- [x] Optimize AI prompts
### **Week 3: AI Prompt Optimization** ✅ **COMPLETED**
- [x] Implement advanced prompts from deep dive
- [x] Create structured JSON schemas
- [x] Optimize prompt performance
- [x] Add error handling and fallbacks
**Status Update**: ✅ **AI Prompt Optimizer Service fully implemented**
- Advanced AI prompts from deep dive analysis implemented
- Comprehensive JSON schemas for structured responses
- Optimized prompt performance with expert-level instructions
- Robust error handling and fallback mechanisms
- Integration with existing AI engine service
### **Week 4: AI Service Integration** ✅ **COMPLETED**
- [x] Create AI Service Manager
- [x] Update all services to use AI Manager
- [x] Implement centralized AI configuration
- [x] Add AI performance monitoring
**Status Update**: ✅ **AI Service Manager fully implemented**
- Centralized AI service management with performance monitoring
- All services updated to use AI Service Manager
- Centralized AI configuration with timeout and retry settings
- Comprehensive AI performance monitoring with metrics tracking
- Service breakdown by AI type with success rates and response times
## ✅ **Phase 4 Status Update**
### **Completed Tasks**
1. **✅ AI Service Manager**
- Centralized AI service management with performance monitoring
- Comprehensive AI configuration with timeout and retry settings
- Service breakdown by AI type with success rates and response times
- Performance metrics tracking and health monitoring
- Centralized prompt and schema management
2. **✅ Service Integration**
- AI Engine Service updated to use AI Service Manager
- All AI calls routed through centralized manager
- Performance monitoring and metrics collection
- Error handling and fallback mechanisms
- Health check integration
3. **✅ Performance Monitoring**
- AI call performance metrics tracking
- Service breakdown by AI type
- Success rate monitoring
- Response time tracking
- Error rate monitoring
### **New Features Implemented**
- **Centralized AI Management**: Single point of control for all AI services
- **Performance Monitoring**: Real-time metrics for AI service performance
- **Service Breakdown**: Detailed metrics by AI service type
- **Configuration Management**: Centralized AI configuration settings
- **Health Monitoring**: Comprehensive health checks for AI services
### **Quality Criteria**
- [ ] AI response accuracy > 85%
- [ ] AI response time < 10 seconds
- [ ] AI error rate < 5%
- [ ] AI fallback mechanisms working
- [ ] AI prompts optimized for quality
## 🔧 **Implementation Steps**
### **Step 1: Environment Setup**
1. Verify Gemini API key configuration
2. Test Gemini provider functionality
3. Set up AI service monitoring
4. Configure error handling
### **Step 2: Core Integration**
1. Update AI Engine Service with real AI calls
2. Implement structured JSON responses
3. Add comprehensive error handling
4. Test AI functionality
### **Step 3: Service Updates**
1. Update Keyword Researcher with AI integration
2. Update Competitor Analyzer with AI integration
3. Update Website Analyzer with AI integration
4. Test all services with AI
### **Step 4: Optimization**
1. Optimize AI prompts for better results
2. Implement AI response caching
3. Add AI performance monitoring
4. Create AI fallback mechanisms
## 📈 **Expected Outcomes**
### **Immediate Benefits**
- Real AI-powered insights instead of hardcoded data
- Dynamic content recommendations
- Intelligent keyword analysis
- Strategic competitive intelligence
### **Long-term Benefits**
- Improved content strategy accuracy
- Better keyword targeting
- Enhanced competitive positioning
- Optimized content performance
---
**Status**: Ready for Implementation
**Priority**: High
**Estimated Duration**: 4 weeks
**Dependencies**: Gemini API key, existing AI infrastructure

View File

@@ -0,0 +1,693 @@
# Calendar Generation Prompt Chaining Architecture
## 🎯 **Executive Summary**
This document outlines an architectural approach using prompt chaining to overcome AI model context window limitations while generating comprehensive, high-quality content calendars. The approach ensures all data sources and data points are utilized effectively while maintaining cost efficiency and output quality.
## 🔍 **Problem Analysis**
### **Context Window Limitations**
- **Single AI Call Limitation**: Current approach tries to fit all data sources, AI prompts, and expected responses in one context window
- **Data Volume Challenge**: 6 data sources with 200+ data points exceed typical context windows
- **Output Complexity**: Detailed calendar generation requires extensive structured output
- **Quality Degradation**: Compressed context leads to incomplete or low-quality responses
### **Calendar Generation Requirements**
- **Comprehensive Data Integration**: All 6 data sources must be utilized
- **Detailed Output**: Weeks/months of content planning across multiple platforms
- **Structured Response**: Complex JSON schemas for calendar components
- **Quality Assurance**: High-quality, actionable calendar recommendations
### **Cost and Quality Constraints**
- **API Cost Management**: Multiple AI calls must be cost-effective
- **Quality Preservation**: Each step must maintain or improve output quality
- **Data Completeness**: No data points should be lost in the process
- **Consistency**: Output must be consistent across all generation steps
## 🏗️ **Prompt Chaining Architecture**
### **Core Concept**
Prompt chaining breaks down complex calendar generation into sequential, focused steps where each step builds upon the previous output. This approach allows for:
- **Focused Context**: Each step uses only relevant data for its specific task
- **Progressive Refinement**: Output quality improves with each iteration
- **Context Optimization**: Efficient use of context window space
- **Quality Control**: Each step can be validated and refined
### **Architecture Overview**
#### **Phase 1: Data Analysis and Strategy Foundation**
- **Step 1**: Content Strategy Analysis
- **Step 2**: Gap Analysis and Opportunity Identification
- **Step 3**: Audience and Platform Strategy
#### **Phase 2: Calendar Structure Generation**
- **Step 4**: Calendar Framework and Timeline
- **Step 5**: Content Pillar Distribution
- **Step 6**: Platform-Specific Strategy
#### **Phase 3: Detailed Content Generation**
- **Step 7**: Weekly Theme Development
- **Step 8**: Daily Content Planning
- **Step 9**: Content Recommendations
#### **Phase 4: Optimization and Validation**
- **Step 10**: Performance Optimization
- **Step 11**: Strategy Alignment Validation
- **Step 12**: Final Calendar Assembly
## 🛡️ **Quality Gates & Content Quality Controls**
### **Enterprise-Level Quality Standards**
#### **1. Content Uniqueness & Duplicate Prevention**
**Quality Gate**: Content Uniqueness Validation
**Implementation**: Every content piece must pass uniqueness checks
**Validation Criteria**:
- **Title Uniqueness**: No duplicate titles across all content types
- **Topic Diversity**: Ensure topic variety within content pillars
- **Keyword Distribution**: Prevent keyword cannibalization
- **Content Angle**: Unique perspective for each piece
- **Platform Adaptation**: Content adapted uniquely per platform
**Quality Control Process**:
```
Step 1: Generate content with uniqueness requirements
Step 2: Cross-reference with existing content database
Step 3: Validate keyword distribution and density
Step 4: Ensure topic diversity within themes
Step 5: Platform-specific adaptation validation
```
#### **2. Content Mix Quality Assurance**
**Quality Gate**: Content Mix Diversity & Balance
**Implementation**: Ensure optimal content distribution and variety
**Validation Criteria**:
- **Content Type Distribution**: Balanced mix of educational, thought leadership, engagement, promotional
- **Topic Variety**: Diverse topics within each content pillar
- **Engagement Level Balance**: Mix of high, medium, and low engagement content
- **Platform Optimization**: Platform-specific content mix
- **Seasonal Relevance**: Content relevance to calendar timeline
**Quality Control Process**:
```
Step 1: Analyze content mix distribution
Step 2: Validate topic diversity within pillars
Step 3: Check engagement level balance
Step 4: Ensure platform-specific optimization
Step 5: Validate seasonal and trending relevance
```
#### **3. Chain Step Context Understanding**
**Quality Gate**: Context Continuity & Progression
**Implementation**: Ensure each step understands and builds upon previous outputs
**Validation Criteria**:
- **Context Summary**: Each step includes summary of previous outputs
- **Progressive Building**: Each step builds upon previous insights
- **Consistency Check**: Maintain consistency across all steps
- **Gap Identification**: Identify and fill gaps from previous steps
- **Quality Progression**: Ensure quality improves with each step
**Quality Control Process**:
```
Step 1: Generate context summary from previous step
Step 2: Validate understanding of previous outputs
Step 3: Ensure progressive building and improvement
Step 4: Check consistency with previous decisions
Step 5: Identify and address any gaps or inconsistencies
```
#### **4. Calendar Structure & Duration Control**
**Quality Gate**: Calendar Structure & Timeline Accuracy
**Implementation**: Ensure exact calendar duration and proper structure
**Validation Criteria**:
- **Duration Accuracy**: Exact calendar duration as specified
- **Content Distribution**: Proper content distribution across timeline
- **Theme Progression**: Logical theme progression and development
- **Platform Coordination**: Coordinated content across platforms
- **Strategic Alignment**: Alignment with content strategy timeline
**Quality Control Process**:
```
Step 1: Validate calendar duration matches requirements
Step 2: Check content distribution across timeline
Step 3: Ensure theme progression and development
Step 4: Validate platform coordination
Step 5: Confirm strategic alignment with timeline
```
#### **5. Enterprise-Level Content Standards**
**Quality Gate**: Enterprise Content Quality & Professionalism
**Implementation**: Ensure enterprise-level content quality and professionalism
**Validation Criteria**:
- **Professional Tone**: Enterprise-appropriate tone and language
- **Strategic Depth**: Deep strategic insights and analysis
- **Actionable Content**: Practical, implementable recommendations
- **Industry Expertise**: Demonstrate industry knowledge and expertise
- **Brand Alignment**: Consistent with brand voice and positioning
**Quality Control Process**:
```
Step 1: Validate professional tone and language
Step 2: Check strategic depth and insights
Step 3: Ensure actionable and practical content
Step 4: Validate industry expertise demonstration
Step 5: Confirm brand alignment and consistency
```
#### **6. Content Strategy KPI Integration**
**Quality Gate**: Strategy KPI Alignment & Achievement
**Implementation**: Utilize content strategy KPIs as quality gates
**Validation Criteria**:
- **KPI Alignment**: Content aligns with defined KPIs
- **Success Metrics**: Content supports success metric achievement
- **Performance Targets**: Content targets defined performance goals
- **ROI Focus**: Content optimized for ROI and business impact
- **Strategic Objectives**: Content supports strategic business objectives
**Quality Control Process**:
```
Step 1: Map content to defined KPIs
Step 2: Validate alignment with success metrics
Step 3: Check performance target support
Step 4: Ensure ROI optimization
Step 5: Confirm strategic objective alignment
```
### **Quality Gate Implementation by Phase**
#### **Phase 1: Foundation Quality Gates**
**Step 1 Quality Gates**:
- Content strategy data completeness validation
- Strategic depth and insight quality
- Business goal alignment verification
**Step 2 Quality Gates**:
- Gap analysis comprehensiveness
- Opportunity prioritization accuracy
- Impact assessment quality
**Step 3 Quality Gates**:
- Audience analysis depth
- Platform strategy alignment
- Content preference accuracy
#### **Phase 2: Structure Quality Gates**
**Step 4 Quality Gates**:
- Calendar framework completeness
- Timeline accuracy and feasibility
- Content distribution balance
**Step 5 Quality Gates**:
- Content pillar distribution quality
- Theme development variety
- Strategic alignment validation
**Step 6 Quality Gates**:
- Platform strategy optimization
- Content adaptation quality
- Cross-platform coordination
#### **Phase 3: Content Quality Gates**
**Step 7 Quality Gates**:
- Weekly theme uniqueness
- Content opportunity integration
- Strategic alignment verification
**Step 8 Quality Gates**:
- Daily content uniqueness
- Keyword distribution optimization
- Content variety validation
**Step 9 Quality Gates**:
- Content recommendation quality
- Gap-filling effectiveness
- Implementation guidance quality
#### **Phase 4: Optimization Quality Gates**
**Step 10 Quality Gates**:
- Performance optimization quality
- Quality improvement effectiveness
- Strategic alignment enhancement
**Step 11 Quality Gates**:
- Strategy alignment validation
- Goal achievement verification
- Content pillar confirmation
**Step 12 Quality Gates**:
- Final calendar completeness
- Quality assurance validation
- Data utilization verification
## 📊 **Data Source Distribution Strategy**
### **Data Source Allocation by Phase**
#### **Phase 1: Foundation Data Sources**
- **Content Strategy Data**: Primary focus for strategy foundation
- **Onboarding Data**: Website analysis and competitor insights
- **AI Analysis Results**: Strategic insights and market positioning
**Context Window Usage**: 60% strategy data, 30% onboarding data, 10% AI analysis
#### **Phase 2: Structure Data Sources**
- **Gap Analysis Data**: Content gaps and opportunities
- **Performance Data**: Historical performance patterns
- **Strategy Data**: Content pillars and audience preferences
**Context Window Usage**: 50% gap analysis, 30% performance data, 20% strategy data
#### **Phase 3: Content Data Sources**
- **Content Recommendations**: Existing recommendations and ideas
- **Keyword Analysis**: High-value keywords and search opportunities
- **Performance Data**: Platform-specific performance metrics
**Context Window Usage**: 40% content recommendations, 35% keyword analysis, 25% performance data
#### **Phase 4: Optimization Data Sources**
- **All Data Sources**: Comprehensive validation and optimization
- **Strategy Alignment**: Content strategy validation
- **Performance Predictions**: Quality assurance and optimization
**Context Window Usage**: 40% all sources summary, 35% strategy alignment, 25% performance validation
## 🔄 **Prompt Chaining Implementation**
### **Phase 1: Data Analysis and Strategy Foundation**
#### **Step 1: Content Strategy Analysis**
**Data Sources**: Content Strategy Data, Onboarding Data
**Context Focus**: Content pillars, target audience, business goals, market positioning
**Quality Gates**:
- Content strategy data completeness validation
- Strategic depth and insight quality
- Business goal alignment verification
- KPI integration and alignment
**Prompt Strategy**:
- Analyze content strategy data for calendar foundation
- Extract content pillars and target audience preferences
- Identify business goals and success metrics
- Determine market positioning and competitive landscape
- Validate against defined KPIs and success metrics
**Expected Output**:
- Content strategy summary with pillars and audience
- Business goals and success metrics
- Market positioning analysis
- Strategy alignment indicators
- KPI mapping and alignment validation
#### **Step 2: Gap Analysis and Opportunity Identification**
**Data Sources**: Gap Analysis Data, Competitor Analysis
**Context Focus**: Content gaps, keyword opportunities, competitor insights
**Quality Gates**:
- Gap analysis comprehensiveness
- Opportunity prioritization accuracy
- Impact assessment quality
- Keyword cannibalization prevention
**Prompt Strategy**:
- Analyze content gaps and their impact potential
- Identify keyword opportunities and search volume
- Extract competitor insights and differentiation opportunities
- Prioritize opportunities based on impact and feasibility
- Prevent keyword cannibalization and duplicate content
**Expected Output**:
- Prioritized content gaps with impact scores
- High-value keyword opportunities
- Competitor differentiation strategies
- Opportunity implementation timeline
- Keyword distribution and uniqueness validation
#### **Step 3: Audience and Platform Strategy**
**Data Sources**: Onboarding Data, Performance Data, Strategy Data
**Context Focus**: Target audience, platform performance, content preferences
**Quality Gates**:
- Audience analysis depth
- Platform strategy alignment
- Content preference accuracy
- Enterprise-level strategy quality
**Prompt Strategy**:
- Analyze target audience demographics and behavior
- Evaluate platform performance and engagement patterns
- Determine optimal content mix and timing
- Identify platform-specific strategies
- Ensure enterprise-level quality and professionalism
**Expected Output**:
- Audience personas and preferences
- Platform performance analysis
- Content mix recommendations
- Optimal timing strategies
- Enterprise-level strategy validation
### **Phase 2: Calendar Structure Generation**
#### **Step 4: Calendar Framework and Timeline**
**Data Sources**: Strategy Analysis Output, Gap Analysis Output
**Context Focus**: Calendar structure, timeline, content distribution
**Quality Gates**:
- Calendar framework completeness
- Timeline accuracy and feasibility
- Content distribution balance
- Duration control and accuracy
**Prompt Strategy**:
- Design calendar framework based on strategy and gaps
- Determine optimal timeline and frequency
- Plan content distribution across time periods
- Establish content themes and focus areas
- Ensure exact calendar duration and structure
**Expected Output**:
- Calendar framework and timeline
- Content frequency and distribution
- Theme structure and focus areas
- Timeline optimization recommendations
- Duration accuracy validation
#### **Step 5: Content Pillar Distribution**
**Data Sources**: Strategy Analysis Output, Calendar Framework
**Context Focus**: Content pillar allocation, theme development
**Quality Gates**:
- Content pillar distribution quality
- Theme development variety
- Strategic alignment validation
- Content mix diversity assurance
**Prompt Strategy**:
- Distribute content pillars across calendar timeline
- Develop theme variations for each pillar
- Balance content types and engagement levels
- Ensure strategic alignment and goal achievement
- Prevent content duplication and ensure variety
**Expected Output**:
- Content pillar distribution plan
- Theme variations and content types
- Engagement level balancing
- Strategic alignment validation
- Content diversity and uniqueness validation
#### **Step 6: Platform-Specific Strategy**
**Data Sources**: Audience Analysis Output, Performance Data
**Context Focus**: Platform optimization, content adaptation
**Quality Gates**:
- Platform strategy optimization
- Content adaptation quality
- Cross-platform coordination
- Platform-specific uniqueness
**Prompt Strategy**:
- Develop platform-specific content strategies
- Adapt content for different platform requirements
- Optimize timing and frequency per platform
- Plan cross-platform content coordination
- Ensure platform-specific content uniqueness
**Expected Output**:
- Platform-specific content strategies
- Content adaptation guidelines
- Platform timing optimization
- Cross-platform coordination plan
- Platform uniqueness validation
### **Phase 3: Detailed Content Generation**
#### **Step 7: Weekly Theme Development**
**Data Sources**: Calendar Framework, Content Pillars, Gap Analysis
**Context Focus**: Weekly themes, content opportunities, strategic alignment
**Quality Gates**:
- Weekly theme uniqueness
- Content opportunity integration
- Strategic alignment verification
- Theme progression quality
**Prompt Strategy**:
- Develop weekly themes based on content pillars
- Incorporate content gaps and opportunities
- Ensure strategic alignment and goal achievement
- Balance content types and engagement levels
- Ensure theme uniqueness and progression
**Expected Output**:
- Weekly theme structure
- Content opportunity integration
- Strategic alignment validation
- Engagement level planning
- Theme uniqueness and progression validation
#### **Step 8: Daily Content Planning**
**Data Sources**: Weekly Themes, Performance Data, Keyword Analysis
**Context Focus**: Daily content, timing optimization, keyword integration
**Quality Gates**:
- Daily content uniqueness
- Keyword distribution optimization
- Content variety validation
- Timing optimization quality
**Prompt Strategy**:
- Plan daily content based on weekly themes
- Optimize timing using performance data
- Integrate high-value keywords naturally
- Ensure content variety and engagement
- Prevent content duplication and keyword cannibalization
**Expected Output**:
- Daily content schedule
- Timing optimization
- Keyword integration plan
- Content variety strategy
- Content uniqueness and keyword distribution validation
#### **Step 9: Content Recommendations**
**Data Sources**: Content Recommendations, Gap Analysis, Strategy Data
**Context Focus**: Specific content ideas, implementation guidance
**Quality Gates**:
- Content recommendation quality
- Gap-filling effectiveness
- Implementation guidance quality
- Enterprise-level content standards
**Prompt Strategy**:
- Generate specific content recommendations
- Address identified content gaps
- Provide implementation guidance
- Ensure strategic alignment and quality
- Maintain enterprise-level content standards
**Expected Output**:
- Specific content recommendations
- Gap-filling content ideas
- Implementation guidance
- Quality assurance metrics
- Enterprise-level content validation
### **Phase 4: Optimization and Validation**
#### **Step 10: Performance Optimization**
**Data Sources**: All Previous Outputs, Performance Data
**Context Focus**: Performance optimization, quality improvement
**Quality Gates**:
- Performance optimization quality
- Quality improvement effectiveness
- Strategic alignment enhancement
- KPI achievement validation
**Prompt Strategy**:
- Optimize calendar for maximum performance
- Improve content quality and engagement
- Enhance strategic alignment
- Validate against performance metrics
- Ensure KPI achievement and ROI optimization
**Expected Output**:
- Performance optimization recommendations
- Quality improvement suggestions
- Strategic alignment validation
- Performance metric validation
- KPI achievement and ROI validation
#### **Step 11: Strategy Alignment Validation**
**Data Sources**: All Previous Outputs, Content Strategy Data
**Context Focus**: Strategy alignment, goal achievement
**Quality Gates**:
- Strategy alignment validation
- Goal achievement verification
- Content pillar confirmation
- Strategic objective alignment
**Prompt Strategy**:
- Validate calendar alignment with content strategy
- Ensure goal achievement and success metrics
- Verify content pillar distribution
- Confirm audience targeting accuracy
- Validate strategic objective achievement
**Expected Output**:
- Strategy alignment validation
- Goal achievement assessment
- Content pillar verification
- Audience targeting confirmation
- Strategic objective achievement validation
#### **Step 12: Final Calendar Assembly**
**Data Sources**: All Previous Outputs, Complete Data Summary
**Context Focus**: Final assembly, quality assurance, completeness
**Quality Gates**:
- Final calendar completeness
- Quality assurance validation
- Data utilization verification
- Enterprise-level final validation
**Prompt Strategy**:
- Assemble final calendar from all components
- Ensure completeness and quality
- Validate all data sources are utilized
- Provide final recommendations and insights
- Ensure enterprise-level quality and completeness
**Expected Output**:
- Complete content calendar
- Quality assurance report
- Data utilization summary
- Final recommendations and insights
- Enterprise-level quality validation
## 💰 **Cost Optimization Strategy**
### **Context Window Efficiency**
- **Focused Prompts**: Each step uses only relevant data sources
- **Progressive Context**: Build context progressively across steps
- **Output Reuse**: Previous outputs become context for next steps
- **Context Compression**: Summarize previous outputs for efficiency
### **API Call Optimization**
- **Parallel Processing**: Execute independent steps in parallel
- **Batch Processing**: Group related steps to reduce API calls
- **Caching Strategy**: Cache intermediate outputs for reuse
- **Quality Gates**: Validate outputs before proceeding to next step
### **Quality Assurance**
- **Step Validation**: Validate each step output before proceeding
- **Consistency Checks**: Ensure consistency across all steps
- **Completeness Validation**: Verify all data sources are utilized
- **Quality Metrics**: Track quality metrics throughout the process
## 🎯 **Quality Assurance Framework**
### **Step-Level Quality Control**
- **Output Validation**: Validate each step output against expected schema
- **Data Completeness**: Ensure all relevant data sources are utilized
- **Strategic Alignment**: Verify alignment with content strategy
- **Performance Metrics**: Track performance indicators for each step
- **Content Uniqueness**: Validate content uniqueness and prevent duplicates
- **Keyword Distribution**: Ensure optimal keyword distribution and prevent cannibalization
### **Cross-Step Consistency**
- **Output Consistency**: Ensure consistency across all steps
- **Data Utilization**: Track data source utilization across steps
- **Strategic Coherence**: Maintain strategic coherence throughout
- **Quality Progression**: Ensure quality improves with each step
- **Context Continuity**: Ensure each step understands previous outputs
- **Content Variety**: Maintain content variety and prevent duplication
### **Final Quality Validation**
- **Completeness Check**: Verify all requirements are met
- **Strategic Alignment**: Validate final alignment with strategy
- **Performance Optimization**: Ensure optimal performance
- **User Experience**: Validate user experience and usability
- **Enterprise Standards**: Ensure enterprise-level quality and professionalism
- **KPI Achievement**: Validate achievement of defined KPIs and success metrics
## 📈 **Expected Outcomes**
### **Quality Improvements**
- **Comprehensive Data Utilization**: All 6 data sources fully utilized
- **Detailed Output**: Complete calendar with weeks/months of content
- **Strategic Alignment**: High alignment with content strategy
- **Performance Optimization**: Optimized for maximum performance
- **Content Uniqueness**: No duplicate content or keyword cannibalization
- **Enterprise Quality**: Enterprise-level content quality and professionalism
### **Cost Efficiency**
- **Context Optimization**: Efficient use of context windows
- **API Call Reduction**: Minimized API calls through optimization
- **Quality Preservation**: Maintained quality despite cost optimization
- **Scalability**: Scalable approach for different calendar sizes
### **User Experience**
- **Transparency**: Complete transparency in generation process
- **Educational Value**: Educational content throughout the process
- **Customization**: User control over generation process
- **Quality Assurance**: Confidence in output quality
- **Enterprise Standards**: Enterprise-level calendar quality and usability
## 🔮 **Implementation Considerations**
### **Technical Implementation**
- **Step Orchestration**: Implement step orchestration and management
- **Context Management**: Manage context across multiple steps
- **Output Caching**: Cache intermediate outputs for efficiency
- **Error Handling**: Robust error handling and recovery
- **Quality Gate Implementation**: Implement comprehensive quality gates
- **Content Uniqueness Validation**: Implement content uniqueness checks
### **Quality Monitoring**
- **Step Monitoring**: Monitor quality at each step
- **Performance Tracking**: Track performance metrics
- **User Feedback**: Incorporate user feedback for improvement
- **Continuous Optimization**: Continuously optimize the process
- **Quality Gate Monitoring**: Monitor quality gate effectiveness
- **Content Quality Tracking**: Track content quality metrics
### **Scalability Planning**
- **Calendar Size Scaling**: Scale for different calendar sizes
- **Data Source Scaling**: Handle additional data sources
- **Platform Scaling**: Scale for additional platforms
- **User Scaling**: Scale for multiple concurrent users
- **Quality Gate Scaling**: Scale quality gates for different use cases
- **Enterprise Scaling**: Scale for enterprise-level requirements
## 📝 **Conclusion**
The enhanced prompt chaining architecture with comprehensive quality gates provides a robust solution for calendar generation that:
1. **Overcomes Context Limitations**: Breaks down complex generation into manageable steps
2. **Ensures Data Completeness**: Utilizes all data sources effectively
3. **Maintains Quality**: Progressive refinement ensures high-quality output
4. **Optimizes Costs**: Efficient use of API calls and context windows
5. **Provides Transparency**: Complete visibility into generation process
6. **Prevents Duplicates**: Comprehensive content uniqueness validation
7. **Ensures Enterprise Quality**: Enterprise-level content quality and professionalism
8. **Achieves Strategic Goals**: Validates achievement of KPIs and success metrics
This approach enables the generation of comprehensive, high-quality, enterprise-level content calendars while addressing the technical limitations of AI model context windows, preventing content duplication and keyword cannibalization, and ensuring cost-effective implementation with strategic alignment.
---
**Document Version**: 2.0
**Last Updated**: August 13, 2025
**Next Review**: September 13, 2025
**Status**: Ready for Implementation with Quality Gates