Base code
This commit is contained in:
679
docs/ALwrity Prompts/AI_INTEGRATION_PLAN.md
Normal file
679
docs/ALwrity Prompts/AI_INTEGRATION_PLAN.md
Normal file
@@ -0,0 +1,679 @@
|
||||
# 🤖 AI Integration Plan for Content Planning System
|
||||
|
||||
## 📋 Current Status Analysis
|
||||
|
||||
### ❌ **Issues Identified**
|
||||
1. **Hardcoded Values**: All AI services currently use simulated data instead of real AI calls
|
||||
2. **Missing AI Integration**: No actual LLM calls in FastAPI services
|
||||
3. **Unused AI Infrastructure**: Gemini provider exists but not integrated
|
||||
4. **Missing AI Prompts**: Advanced prompts from legacy system not implemented
|
||||
|
||||
### ✅ **Available AI Infrastructure**
|
||||
1. **Gemini Provider**: `backend/llm_providers/gemini_provider.py` ✅
|
||||
2. **Main Text Generation**: `backend/llm_providers/main_text_generation.py` ✅
|
||||
3. **API Key Management**: `backend/services/api_key_manager.py` ✅
|
||||
4. **AI Prompts**: Available in `CONTENT_GAP_ANALYSIS_DEEP_DIVE.md` ✅
|
||||
|
||||
## 🎯 **AI Integration Strategy**
|
||||
|
||||
### **Phase 1: Core AI Integration (Week 1)**
|
||||
|
||||
#### 1.1 **AI Engine Service Enhancement**
|
||||
**File**: `backend/services/content_gap_analyzer/ai_engine_service.py`
|
||||
|
||||
**Current Issues**:
|
||||
- All methods use hardcoded responses
|
||||
- No actual AI calls implemented
|
||||
- Missing integration with Gemini provider
|
||||
|
||||
**Implementation Plan**:
|
||||
```python
|
||||
# Add imports
|
||||
from backend.llm_providers.main_text_generation import llm_text_gen
|
||||
from backend.llm_providers.gemini_provider import gemini_structured_json_response
|
||||
|
||||
# Replace hardcoded responses with AI calls
|
||||
async def analyze_content_gaps(self, analysis_summary: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Analyze content gaps using AI insights."""
|
||||
try:
|
||||
prompt = f"""
|
||||
As an expert SEO content strategist, analyze this comprehensive content gap analysis data and provide actionable insights:
|
||||
|
||||
TARGET ANALYSIS:
|
||||
- Website: {analysis_summary.get('target_url', 'N/A')}
|
||||
- Industry: {analysis_summary.get('industry', 'N/A')}
|
||||
- SERP Opportunities: {analysis_summary.get('serp_opportunities', 0)} keywords not ranking
|
||||
- Keyword Expansion: {analysis_summary.get('expanded_keywords_count', 0)} additional keywords identified
|
||||
- Competitors Analyzed: {analysis_summary.get('competitors_analyzed', 0)} websites
|
||||
|
||||
DOMINANT CONTENT THEMES:
|
||||
{json.dumps(analysis_summary.get('dominant_themes', {}), indent=2)}
|
||||
|
||||
PROVIDE:
|
||||
1. Strategic Content Gap Analysis
|
||||
2. Priority Content Recommendations (top 5)
|
||||
3. Keyword Strategy Insights
|
||||
4. Competitive Positioning Advice
|
||||
5. Content Format Recommendations
|
||||
6. Technical SEO Opportunities
|
||||
7. Implementation Timeline (30/60/90 days)
|
||||
|
||||
Format as JSON with clear, actionable recommendations.
|
||||
"""
|
||||
|
||||
# Use structured JSON response for better parsing
|
||||
response = gemini_structured_json_response(
|
||||
prompt=prompt,
|
||||
schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"strategic_insights": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"type": {"type": "string"},
|
||||
"insight": {"type": "string"},
|
||||
"confidence": {"type": "number"},
|
||||
"priority": {"type": "string"},
|
||||
"estimated_impact": {"type": "string"}
|
||||
}
|
||||
}
|
||||
},
|
||||
"content_recommendations": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"type": {"type": "string"},
|
||||
"recommendation": {"type": "string"},
|
||||
"priority": {"type": "string"},
|
||||
"estimated_traffic": {"type": "string"},
|
||||
"implementation_time": {"type": "string"}
|
||||
}
|
||||
}
|
||||
},
|
||||
"performance_predictions": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"estimated_traffic_increase": {"type": "string"},
|
||||
"estimated_ranking_improvement": {"type": "string"},
|
||||
"estimated_engagement_increase": {"type": "string"},
|
||||
"estimated_conversion_increase": {"type": "string"},
|
||||
"confidence_level": {"type": "string"}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
return json.loads(response)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in AI content gap analysis: {str(e)}")
|
||||
return {}
|
||||
```
|
||||
|
||||
#### 1.2 **Keyword Researcher AI Integration**
|
||||
**File**: `backend/services/content_gap_analyzer/keyword_researcher.py`
|
||||
|
||||
**Implementation Plan**:
|
||||
```python
|
||||
# Add AI integration for keyword analysis
|
||||
async def _analyze_keyword_trends(self, industry: str, target_keywords: Optional[List[str]] = None) -> Dict[str, Any]:
|
||||
"""Analyze keyword trends using AI."""
|
||||
try:
|
||||
prompt = f"""
|
||||
Analyze keyword opportunities for {industry} industry:
|
||||
|
||||
Target Keywords: {target_keywords or []}
|
||||
|
||||
Provide comprehensive keyword analysis including:
|
||||
1. Search volume estimates
|
||||
2. Competition levels
|
||||
3. Trend analysis
|
||||
4. Opportunity scoring
|
||||
5. Content format recommendations
|
||||
|
||||
Format as structured JSON with detailed analysis.
|
||||
"""
|
||||
|
||||
response = gemini_structured_json_response(
|
||||
prompt=prompt,
|
||||
schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"trends": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"search_volume": {"type": "number"},
|
||||
"difficulty": {"type": "number"},
|
||||
"trend": {"type": "string"},
|
||||
"competition": {"type": "string"},
|
||||
"intent": {"type": "string"},
|
||||
"cpc": {"type": "number"}
|
||||
}
|
||||
}
|
||||
},
|
||||
"summary": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"total_keywords": {"type": "number"},
|
||||
"high_volume_keywords": {"type": "number"},
|
||||
"low_competition_keywords": {"type": "number"},
|
||||
"trending_keywords": {"type": "number"}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
return json.loads(response)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error analyzing keyword trends: {str(e)}")
|
||||
return {}
|
||||
```
|
||||
|
||||
#### 1.3 **Competitor Analyzer AI Integration**
|
||||
**File**: `backend/services/content_gap_analyzer/competitor_analyzer.py`
|
||||
|
||||
**Implementation Plan**:
|
||||
```python
|
||||
# Add AI integration for competitor analysis
|
||||
async def _evaluate_market_position(self, competitors: List[Dict[str, Any]], industry: str) -> Dict[str, Any]:
|
||||
"""Evaluate market position using AI."""
|
||||
try:
|
||||
prompt = f"""
|
||||
Analyze the market position of competitors in the {industry} industry:
|
||||
|
||||
Competitor Analyses:
|
||||
{json.dumps(competitors, indent=2)}
|
||||
|
||||
Provide:
|
||||
1. Market position analysis
|
||||
2. Content gaps
|
||||
3. Competitive advantages
|
||||
4. Strategic positioning recommendations
|
||||
|
||||
Format as structured JSON with detailed analysis.
|
||||
"""
|
||||
|
||||
response = gemini_structured_json_response(
|
||||
prompt=prompt,
|
||||
schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"market_leader": {"type": "string"},
|
||||
"content_leader": {"type": "string"},
|
||||
"quality_leader": {"type": "string"},
|
||||
"market_gaps": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"}
|
||||
},
|
||||
"opportunities": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"}
|
||||
},
|
||||
"competitive_advantages": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"}
|
||||
},
|
||||
"strategic_recommendations": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"type": {"type": "string"},
|
||||
"recommendation": {"type": "string"},
|
||||
"priority": {"type": "string"},
|
||||
"estimated_impact": {"type": "string"}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
return json.loads(response)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error evaluating market position: {str(e)}")
|
||||
return {}
|
||||
```
|
||||
|
||||
### **Phase 2: Advanced AI Features (Week 2)**
|
||||
|
||||
#### 2.1 **Content Performance Prediction**
|
||||
```python
|
||||
async def predict_content_performance(self, content_data: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Predict content performance using AI."""
|
||||
try:
|
||||
prompt = f"""
|
||||
Predict content performance based on the following data:
|
||||
|
||||
Content Data: {json.dumps(content_data, indent=2)}
|
||||
|
||||
Provide detailed performance predictions including:
|
||||
1. Traffic predictions
|
||||
2. Engagement predictions
|
||||
3. Ranking predictions
|
||||
4. Conversion predictions
|
||||
5. Risk factors
|
||||
6. Success factors
|
||||
|
||||
Format as structured JSON with confidence levels.
|
||||
"""
|
||||
|
||||
response = gemini_structured_json_response(
|
||||
prompt=prompt,
|
||||
schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"traffic_predictions": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"estimated_monthly_traffic": {"type": "string"},
|
||||
"traffic_growth_rate": {"type": "string"},
|
||||
"peak_traffic_month": {"type": "string"},
|
||||
"confidence_level": {"type": "string"}
|
||||
}
|
||||
},
|
||||
"engagement_predictions": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"estimated_time_on_page": {"type": "string"},
|
||||
"estimated_bounce_rate": {"type": "string"},
|
||||
"estimated_social_shares": {"type": "string"},
|
||||
"estimated_comments": {"type": "string"},
|
||||
"confidence_level": {"type": "string"}
|
||||
}
|
||||
},
|
||||
"ranking_predictions": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"estimated_ranking_position": {"type": "string"},
|
||||
"estimated_ranking_time": {"type": "string"},
|
||||
"ranking_confidence": {"type": "string"},
|
||||
"competition_level": {"type": "string"}
|
||||
}
|
||||
},
|
||||
"conversion_predictions": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"estimated_conversion_rate": {"type": "string"},
|
||||
"estimated_lead_generation": {"type": "string"},
|
||||
"estimated_revenue_impact": {"type": "string"},
|
||||
"confidence_level": {"type": "string"}
|
||||
}
|
||||
},
|
||||
"risk_factors": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"}
|
||||
},
|
||||
"success_factors": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"}
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
return json.loads(response)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in AI performance prediction: {str(e)}")
|
||||
return {}
|
||||
```
|
||||
|
||||
#### 2.2 **Strategic Intelligence Generation**
|
||||
```python
|
||||
async def generate_strategic_insights(self, analysis_data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
||||
"""Generate strategic insights using AI."""
|
||||
try:
|
||||
prompt = f"""
|
||||
Generate strategic insights based on the following analysis data:
|
||||
|
||||
Analysis Data: {json.dumps(analysis_data, indent=2)}
|
||||
|
||||
Provide strategic insights covering:
|
||||
1. Content strategy recommendations
|
||||
2. Competitive positioning advice
|
||||
3. Content optimization suggestions
|
||||
4. Innovation opportunities
|
||||
5. Risk mitigation strategies
|
||||
|
||||
Format as structured JSON with detailed insights.
|
||||
"""
|
||||
|
||||
response = gemini_structured_json_response(
|
||||
prompt=prompt,
|
||||
schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"strategic_insights": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"type": {"type": "string"},
|
||||
"insight": {"type": "string"},
|
||||
"reasoning": {"type": "string"},
|
||||
"priority": {"type": "string"},
|
||||
"estimated_impact": {"type": "string"},
|
||||
"implementation_time": {"type": "string"}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
result = json.loads(response)
|
||||
return result.get('strategic_insights', [])
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error generating AI strategic insights: {str(e)}")
|
||||
return []
|
||||
```
|
||||
|
||||
### **Phase 3: AI Prompt Optimization (Week 3)**
|
||||
|
||||
#### 3.1 **Enhanced AI Prompts**
|
||||
Based on the deep dive analysis, implement these advanced prompts:
|
||||
|
||||
**Content Gap Analysis Prompt**:
|
||||
```python
|
||||
CONTENT_GAP_ANALYSIS_PROMPT = """
|
||||
As an expert SEO content strategist, analyze this comprehensive content gap analysis data and provide actionable insights:
|
||||
|
||||
TARGET ANALYSIS:
|
||||
- Website: {target_url}
|
||||
- Industry: {industry}
|
||||
- SERP Opportunities: {serp_opportunities} keywords not ranking
|
||||
- Keyword Expansion: {expanded_keywords_count} additional keywords identified
|
||||
- Competitors Analyzed: {competitors_analyzed} websites
|
||||
|
||||
DOMINANT CONTENT THEMES:
|
||||
{dominant_themes}
|
||||
|
||||
PROVIDE:
|
||||
1. Strategic Content Gap Analysis
|
||||
2. Priority Content Recommendations (top 5)
|
||||
3. Keyword Strategy Insights
|
||||
4. Competitive Positioning Advice
|
||||
5. Content Format Recommendations
|
||||
6. Technical SEO Opportunities
|
||||
7. Implementation Timeline (30/60/90 days)
|
||||
|
||||
Format as JSON with clear, actionable recommendations.
|
||||
"""
|
||||
```
|
||||
|
||||
**Market Position Analysis Prompt**:
|
||||
```python
|
||||
MARKET_POSITION_PROMPT = """
|
||||
Analyze the market position of competitors in the {industry} industry:
|
||||
|
||||
Competitor Analyses:
|
||||
{competitor_analyses}
|
||||
|
||||
Provide:
|
||||
1. Market position analysis
|
||||
2. Content gaps
|
||||
3. Competitive advantages
|
||||
4. Strategic positioning recommendations
|
||||
|
||||
Format as JSON with detailed analysis.
|
||||
"""
|
||||
```
|
||||
|
||||
**Keyword Analysis Prompt**:
|
||||
```python
|
||||
KEYWORD_ANALYSIS_PROMPT = """
|
||||
Analyze keyword opportunities for {industry} industry:
|
||||
|
||||
Keyword Trends: {trend_analysis}
|
||||
Search Intent: {intent_analysis}
|
||||
Opportunities: {opportunities}
|
||||
|
||||
Provide:
|
||||
1. High-priority keyword recommendations
|
||||
2. Content format suggestions
|
||||
3. Topic cluster development
|
||||
4. Search intent optimization
|
||||
|
||||
Format as JSON with detailed analysis.
|
||||
"""
|
||||
```
|
||||
|
||||
### **Phase 4: AI Service Integration (Week 4)**
|
||||
|
||||
#### 4.1 **Create AI Service Manager**
|
||||
**File**: `backend/services/ai_service_manager.py`
|
||||
|
||||
```python
|
||||
"""
|
||||
AI Service Manager
|
||||
Centralized AI service management for content planning system.
|
||||
"""
|
||||
|
||||
from typing import Dict, Any, List, Optional
|
||||
from loguru import logger
|
||||
import json
|
||||
|
||||
from backend.llm_providers.main_text_generation import llm_text_gen
|
||||
from backend.llm_providers.gemini_provider import gemini_structured_json_response
|
||||
|
||||
class AIServiceManager:
|
||||
"""Manages AI service interactions and prompt handling."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize AI service manager."""
|
||||
self.logger = logger
|
||||
self.prompts = self._load_prompts()
|
||||
|
||||
def _load_prompts(self) -> Dict[str, str]:
|
||||
"""Load AI prompts from configuration."""
|
||||
return {
|
||||
'content_gap_analysis': CONTENT_GAP_ANALYSIS_PROMPT,
|
||||
'market_position': MARKET_POSITION_PROMPT,
|
||||
'keyword_analysis': KEYWORD_ANALYSIS_PROMPT,
|
||||
'performance_prediction': PERFORMANCE_PREDICTION_PROMPT,
|
||||
'strategic_insights': STRATEGIC_INSIGHTS_PROMPT
|
||||
}
|
||||
|
||||
async def generate_content_gap_analysis(self, analysis_data: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Generate content gap analysis using AI."""
|
||||
try:
|
||||
prompt = self.prompts['content_gap_analysis'].format(**analysis_data)
|
||||
|
||||
response = gemini_structured_json_response(
|
||||
prompt=prompt,
|
||||
schema=CONTENT_GAP_ANALYSIS_SCHEMA
|
||||
)
|
||||
|
||||
return json.loads(response)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error generating content gap analysis: {str(e)}")
|
||||
return {}
|
||||
|
||||
async def generate_market_position_analysis(self, market_data: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Generate market position analysis using AI."""
|
||||
try:
|
||||
prompt = self.prompts['market_position'].format(**market_data)
|
||||
|
||||
response = gemini_structured_json_response(
|
||||
prompt=prompt,
|
||||
schema=MARKET_POSITION_SCHEMA
|
||||
)
|
||||
|
||||
return json.loads(response)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error generating market position analysis: {str(e)}")
|
||||
return {}
|
||||
|
||||
async def generate_keyword_analysis(self, keyword_data: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Generate keyword analysis using AI."""
|
||||
try:
|
||||
prompt = self.prompts['keyword_analysis'].format(**keyword_data)
|
||||
|
||||
response = gemini_structured_json_response(
|
||||
prompt=prompt,
|
||||
schema=KEYWORD_ANALYSIS_SCHEMA
|
||||
)
|
||||
|
||||
return json.loads(response)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error generating keyword analysis: {str(e)}")
|
||||
return {}
|
||||
```
|
||||
|
||||
#### 4.2 **Update All Services to Use AI Manager**
|
||||
```python
|
||||
# In each service file, replace hardcoded responses with AI calls
|
||||
from services.ai_service_manager import AIServiceManager
|
||||
|
||||
class AIEngineService:
|
||||
def __init__(self):
|
||||
self.ai_manager = AIServiceManager()
|
||||
logger.info("AIEngineService initialized")
|
||||
|
||||
async def analyze_content_gaps(self, analysis_summary: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Analyze content gaps using AI insights."""
|
||||
return await self.ai_manager.generate_content_gap_analysis(analysis_summary)
|
||||
|
||||
async def analyze_market_position(self, market_data: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Analyze market position using AI insights."""
|
||||
return await self.ai_manager.generate_market_position_analysis(market_data)
|
||||
```
|
||||
|
||||
## 📊 **Implementation Timeline**
|
||||
|
||||
### **Week 1: Core AI Integration** ✅ **COMPLETED**
|
||||
- [x] Replace hardcoded responses in AI Engine Service
|
||||
- [x] Integrate Gemini provider calls
|
||||
- [x] Implement basic AI prompts
|
||||
- [x] Test AI functionality
|
||||
|
||||
### **Week 2: Advanced AI Features** ✅ **COMPLETED**
|
||||
- [x] Implement content performance prediction
|
||||
- [x] Add strategic intelligence generation
|
||||
- [x] Create comprehensive AI schemas
|
||||
- [x] Optimize AI prompts
|
||||
|
||||
### **Week 3: AI Prompt Optimization** ✅ **COMPLETED**
|
||||
- [x] Implement advanced prompts from deep dive
|
||||
- [x] Create structured JSON schemas
|
||||
- [x] Optimize prompt performance
|
||||
- [x] Add error handling and fallbacks
|
||||
|
||||
**Status Update**: ✅ **AI Prompt Optimizer Service fully implemented**
|
||||
- Advanced AI prompts from deep dive analysis implemented
|
||||
- Comprehensive JSON schemas for structured responses
|
||||
- Optimized prompt performance with expert-level instructions
|
||||
- Robust error handling and fallback mechanisms
|
||||
- Integration with existing AI engine service
|
||||
|
||||
### **Week 4: AI Service Integration** ✅ **COMPLETED**
|
||||
- [x] Create AI Service Manager
|
||||
- [x] Update all services to use AI Manager
|
||||
- [x] Implement centralized AI configuration
|
||||
- [x] Add AI performance monitoring
|
||||
|
||||
**Status Update**: ✅ **AI Service Manager fully implemented**
|
||||
- Centralized AI service management with performance monitoring
|
||||
- All services updated to use AI Service Manager
|
||||
- Centralized AI configuration with timeout and retry settings
|
||||
- Comprehensive AI performance monitoring with metrics tracking
|
||||
- Service breakdown by AI type with success rates and response times
|
||||
|
||||
## ✅ **Phase 4 Status Update**
|
||||
|
||||
### **Completed Tasks**
|
||||
1. **✅ AI Service Manager**
|
||||
- Centralized AI service management with performance monitoring
|
||||
- Comprehensive AI configuration with timeout and retry settings
|
||||
- Service breakdown by AI type with success rates and response times
|
||||
- Performance metrics tracking and health monitoring
|
||||
- Centralized prompt and schema management
|
||||
|
||||
2. **✅ Service Integration**
|
||||
- AI Engine Service updated to use AI Service Manager
|
||||
- All AI calls routed through centralized manager
|
||||
- Performance monitoring and metrics collection
|
||||
- Error handling and fallback mechanisms
|
||||
- Health check integration
|
||||
|
||||
3. **✅ Performance Monitoring**
|
||||
- AI call performance metrics tracking
|
||||
- Service breakdown by AI type
|
||||
- Success rate monitoring
|
||||
- Response time tracking
|
||||
- Error rate monitoring
|
||||
|
||||
### **New Features Implemented**
|
||||
- **Centralized AI Management**: Single point of control for all AI services
|
||||
- **Performance Monitoring**: Real-time metrics for AI service performance
|
||||
- **Service Breakdown**: Detailed metrics by AI service type
|
||||
- **Configuration Management**: Centralized AI configuration settings
|
||||
- **Health Monitoring**: Comprehensive health checks for AI services
|
||||
|
||||
### **Quality Criteria**
|
||||
- [ ] AI response accuracy > 85%
|
||||
- [ ] AI response time < 10 seconds
|
||||
- [ ] AI error rate < 5%
|
||||
- [ ] AI fallback mechanisms working
|
||||
- [ ] AI prompts optimized for quality
|
||||
|
||||
## 🔧 **Implementation Steps**
|
||||
|
||||
### **Step 1: Environment Setup**
|
||||
1. Verify Gemini API key configuration
|
||||
2. Test Gemini provider functionality
|
||||
3. Set up AI service monitoring
|
||||
4. Configure error handling
|
||||
|
||||
### **Step 2: Core Integration**
|
||||
1. Update AI Engine Service with real AI calls
|
||||
2. Implement structured JSON responses
|
||||
3. Add comprehensive error handling
|
||||
4. Test AI functionality
|
||||
|
||||
### **Step 3: Service Updates**
|
||||
1. Update Keyword Researcher with AI integration
|
||||
2. Update Competitor Analyzer with AI integration
|
||||
3. Update Website Analyzer with AI integration
|
||||
4. Test all services with AI
|
||||
|
||||
### **Step 4: Optimization**
|
||||
1. Optimize AI prompts for better results
|
||||
2. Implement AI response caching
|
||||
3. Add AI performance monitoring
|
||||
4. Create AI fallback mechanisms
|
||||
|
||||
## 📈 **Expected Outcomes**
|
||||
|
||||
### **Immediate Benefits**
|
||||
- ✅ Real AI-powered insights instead of hardcoded data
|
||||
- ✅ Dynamic content recommendations
|
||||
- ✅ Intelligent keyword analysis
|
||||
- ✅ Strategic competitive intelligence
|
||||
|
||||
### **Long-term Benefits**
|
||||
- ✅ Improved content strategy accuracy
|
||||
- ✅ Better keyword targeting
|
||||
- ✅ Enhanced competitive positioning
|
||||
- ✅ Optimized content performance
|
||||
|
||||
---
|
||||
|
||||
**Status**: Ready for Implementation
|
||||
**Priority**: High
|
||||
**Estimated Duration**: 4 weeks
|
||||
**Dependencies**: Gemini API key, existing AI infrastructure
|
||||
Reference in New Issue
Block a user