Base code

This commit is contained in:
Kunthawat Greethong
2026-01-08 22:39:53 +07:00
parent 697115c61a
commit c35fa52117
2169 changed files with 626670 additions and 0 deletions

View File

@@ -0,0 +1,669 @@
# Phase 1 Implementation Review & Gap Analysis
**Date**: 2025-01-29
**Status**: ✅ Phase 1 Complete - Ready for End-User Testing
---
## 📊 Gap Status Summary
| Gap | Status | Implementation Details |
|-----|--------|----------------------|
| **1. Persona-Aware Defaults Integration** | ✅ **COMPLETE** | Frontend fetches and applies defaults on wizard load |
| **2. Research Persona Integration** | ✅ **COMPLETE** | Backend enriches context with persona data |
| **3. Provider Auto-Selection (Exa First)** | ✅ **COMPLETE** | Exa → Tavily → Google for all modes |
| **4. Visual Status Indicators** | ✅ **COMPLETE** | Provider chips show actual availability |
| **5. Domain Suggestions Auto-Population** | ✅ **VERIFIED** | Industry change triggers domain suggestions |
| **6. AI Query Enhancement** | ❌ **NOT STARTED** | Phase 2 feature |
| **7. Smart Preset Generation** | ❌ **NOT STARTED** | Phase 2 feature (depends on research persona) |
| **8. Date Range & Source Type Filtering** | ❌ **NOT STARTED** | Phase 2 feature |
**Completion Rate**: 5/8 gaps addressed (62.5%)
---
## ✅ Implemented Features
### 1. Persona-Aware Defaults Integration ✅
**What Was Implemented:**
- `getResearchConfig()` now fetches both provider availability AND persona defaults in parallel
- `ResearchInput.tsx` applies persona defaults on component mount:
- Industry auto-fills if currently "General"
- Target audience auto-fills if currently "General"
- Exa domains auto-populate if Exa is available and domains not already set
- Exa category auto-applies if not already set
**Files Modified:**
- `frontend/src/api/researchConfig.ts` - Fetches persona defaults
- `frontend/src/components/Research/steps/ResearchInput.tsx` - Applies defaults (lines 85-114)
**How It Works:**
1. Wizard loads → `getResearchConfig()` called
2. API fetches `/api/research/persona-defaults` in parallel with provider status
3. If fields are "General" (default), persona defaults are applied
4. User can still override any auto-filled values
**Testing Notes:**
- ✅ Works for new users (fields start as "General")
- ⚠️ May not apply if localStorage has saved state with non-General values (intentional - respects user choices)
- ✅ Graceful fallback if persona API fails
---
### 2. Research Persona Integration ✅
**What Was Implemented:**
- `ResearchEngine` now fetches and uses research persona during research execution
- Persona data enriches the research context:
- Industry and target audience (if not set)
- Suggested Exa domains (if not set)
- Suggested Exa category (if not set)
- Uses cached persona (7-day TTL) - no expensive LLM calls during research
**Files Modified:**
- `backend/services/research/core/research_engine.py`:
- Added `_get_research_persona()` method (lines 88-114)
- Added `_enrich_context_with_persona()` method (lines 116-152)
- Integrated into `research()` method (lines 171-177)
**How It Works:**
1. User executes research → `ResearchEngine.research()` called
2. Engine fetches cached research persona for user (if available)
3. Persona data enriches the `ResearchContext`:
- Only applies if fields are not already set
- User-provided values always take precedence
4. Enriched context passed to `ParameterOptimizer`
5. Optimizer uses persona data for better parameter selection
**Testing Notes:**
- ✅ Only loads cached persona (fast, no LLM calls)
- ✅ Graceful fallback if persona not available
- ✅ User overrides are respected
- ⚠️ Requires user to have completed onboarding and have research persona generated
---
### 3. Provider Auto-Selection (Exa First) ✅
**What Was Implemented:**
- **Frontend**: Auto-selects Exa → Tavily → Google for ALL modes (including basic)
- **Backend**: `ParameterOptimizer` always prefers Exa → Tavily → Google
- Removed mode-based provider selection logic
**Files Modified:**
- `frontend/src/components/Research/steps/ResearchInput.tsx` (lines 154-191)
- `backend/services/research/core/parameter_optimizer.py` (lines 176-224)
**Priority Order:**
1. **Exa** (Primary) - Neural semantic search, best for all content types
2. **Tavily** (Secondary) - AI-powered search, good for real-time/news
3. **Google** (Fallback) - Gemini grounding, used when others unavailable
**Testing Notes:**
- ✅ Exa selected when available (regardless of mode)
- ✅ Falls back to Tavily if Exa unavailable
- ✅ Falls back to Google if both unavailable
- ✅ User can still manually override provider
---
### 4. Visual Status Indicators ✅
**What Was Implemented:**
- `ProviderChips` component shows actual provider availability
- Status dots: Green = configured, Red = not configured
- Reordered to show priority: Exa → Tavily → Google
- Updated tooltips to indicate provider roles
**Files Modified:**
- `frontend/src/components/Research/steps/components/ProviderChips.tsx`
**Visual Changes:**
- Exa shown first (primary provider)
- Tavily shown second (secondary provider)
- Google shown third (fallback provider)
- Status dots reflect actual API key configuration
**Testing Notes:**
- ✅ Status indicators reflect real API key status
- ✅ Tooltips explain provider roles
- ✅ No longer tied to "advanced mode" toggle
---
### 5. Domain Suggestions Auto-Population ✅
**What Was Implemented:**
- Industry change triggers domain suggestions (already existed)
- Persona defaults also provide domain suggestions
- Works for both Exa and Tavily providers
**Files Modified:**
- `frontend/src/components/Research/steps/ResearchInput.tsx` (lines 193-225)
- Uses existing `getIndustryDomainSuggestions()` utility
**How It Works:**
1. User selects industry → `useEffect` triggers
2. `getIndustryDomainSuggestions(industry)` called
3. Domains auto-populate in Exa config if Exa available
4. Persona defaults also provide domains on initial load
**Testing Notes:**
- ✅ Industry change triggers domain suggestions
- ✅ Persona defaults provide domains on load
- ✅ Works for both Exa and Tavily
- ⚠️ Domains only auto-populate for Exa (Tavily domains need manual transfer)
---
## ❌ Remaining Gaps (Phase 2)
### 6. AI Query Enhancement ❌
**Status**: Not Started
**Priority**: High
**Dependencies**: Research persona (✅ now available)
**What's Needed:**
- Backend service to enhance vague user queries
- Endpoint: `/api/research/enhance-query`
- Frontend "Enhance Query" button
- Uses research persona's `query_enhancement_rules`
**Implementation Plan:**
1. Create `backend/services/research/core/query_enhancer.py`
2. Add `/api/research/enhance-query` endpoint
3. Add UI button in `ResearchInput.tsx`
4. Integrate with research persona rules
---
### 7. Smart Preset Generation ❌
**Status**: Not Started
**Priority**: Medium
**Dependencies**: Research persona (✅ now available)
**What's Needed:**
- Generate presets from research persona
- Use persona's `recommended_presets` field
- Display in frontend wizard
- Learn from successful research patterns
**Implementation Plan:**
1. Use research persona's `recommended_presets` field
2. Display presets in `ResearchInput.tsx`
3. Add preset generation service (future)
4. Track successful research patterns (future)
---
### 8. Date Range & Source Type Filtering ❌
**Status**: Not Started
**Priority**: Medium
**What's Needed:**
- Add date range controls to frontend
- Add source type checkboxes
- Pass to Research Engine API
- Integrate with providers (Tavily supports time_range)
**Implementation Plan:**
1. Add `date_range` and `source_types` to `ResearchContext`
2. Add UI controls (collapsible section or advanced mode)
3. Update `ResearchEngine` to pass to providers
4. Test with Tavily time_range parameter
---
## 🧪 End-User Testing Checklist
### Test Scenario 1: New User (No Onboarding)
- [ ] Open Research Wizard
- [ ] Verify fields start as "General"
- [ ] Verify provider auto-selects to Exa (if available)
- [ ] Verify status indicators show correct provider availability
- [ ] Enter keywords and execute research
- [ ] Verify research completes successfully
### Test Scenario 2: User with Onboarding (Persona Available)
- [ ] Open Research Wizard
- [ ] Verify industry auto-fills from persona defaults
- [ ] Verify target audience auto-fills from persona defaults
- [ ] Verify Exa domains auto-populate (if Exa available)
- [ ] Verify Exa category auto-applies
- [ ] Execute research
- [ ] Verify backend logs show persona enrichment
- [ ] Verify research uses persona-suggested domains/category
### Test Scenario 3: Provider Availability
- [ ] Test with Exa available → Should select Exa
- [ ] Test with only Tavily available → Should select Tavily
- [ ] Test with only Google available → Should select Google
- [ ] Verify status chips show correct colors (green/red)
- [ ] Verify tooltips explain provider roles
### Test Scenario 4: Provider Fallback
- [ ] Configure only Exa → Execute research → Verify Exa used
- [ ] Disable Exa, enable Tavily → Execute research → Verify Tavily used
- [ ] Disable both, enable Google → Execute research → Verify Google used
### Test Scenario 5: User Overrides
- [ ] Auto-fill persona defaults
- [ ] Manually change industry → Verify override works
- [ ] Manually change provider → Verify override works
- [ ] Execute research → Verify user values are respected
### Test Scenario 6: Domain Suggestions
- [ ] Select "Healthcare" industry → Verify domains auto-populate
- [ ] Select "Technology" industry → Verify domains change
- [ ] Verify domains appear in Exa options
- [ ] Execute research → Verify domains are used in search
---
## 📋 Next Implementation Items (Phase 2)
### Priority 1: High-Value Features
**1. AI Query Enhancement** (High Priority)
- **Impact**: Transforms vague inputs into actionable queries
- **Effort**: Medium (2-3 days)
- **Dependencies**: ✅ Research persona available
- **Files to Create/Modify**:
- `backend/services/research/core/query_enhancer.py` (NEW)
- `backend/api/research/router.py` (add endpoint)
- `frontend/src/components/Research/steps/ResearchInput.tsx` (add button)
**2. Research Persona Presets Display** (Medium Priority)
- **Impact**: Shows personalized presets from research persona
- **Effort**: Low (1 day)
- **Dependencies**: ✅ Research persona available
- **Files to Modify**:
- `frontend/src/components/Research/steps/ResearchInput.tsx` (display presets)
- Use `research_persona.recommended_presets` field
### Priority 2: Enhanced Filtering
**3. Date Range & Source Type Filtering** (Medium Priority)
- **Impact**: Better control over research scope
- **Effort**: Medium (2 days)
- **Dependencies**: None
- **Files to Modify**:
- `backend/services/research/core/research_context.py` (add fields)
- `backend/services/research/core/research_engine.py` (pass to providers)
- `frontend/src/components/Research/steps/ResearchInput.tsx` (add UI)
### Priority 3: Advanced Features
**4. Smart Preset Generation** (Low Priority)
- **Impact**: AI-generated presets based on research history
- **Effort**: High (3-4 days)
- **Dependencies**: Research history tracking
- **Files to Create/Modify**:
- `backend/services/research/core/preset_generator.py` (NEW)
- Research history tracking service (NEW)
---
## 🔍 Known Issues & Limitations
### 1. Persona Defaults Timing
- **Issue**: Persona defaults only apply if fields are "General"
- **Impact**: If localStorage has saved state, defaults may not apply
- **Workaround**: Clear localStorage or manually reset to "General"
- **Future Fix**: Add "Reset to Persona Defaults" button
### 2. Domain Suggestions Provider-Specific
- **Issue**: Domain suggestions only auto-populate for Exa
- **Impact**: Tavily domains need manual entry
- **Future Fix**: Auto-populate for both providers
### 3. Research Persona Cache
- **Issue**: Persona only loaded if cached (7-day TTL)
- **Impact**: New users or expired cache won't get persona benefits
- **Workaround**: Persona generation happens during onboarding or scheduled task
- **Future Fix**: Auto-generate on-demand if cache expired
### 4. Query Enhancement Not Available
- **Issue**: No way to enhance vague queries
- **Impact**: Users must manually refine queries
- **Future Fix**: Implement AI query enhancement (Phase 2)
---
## 📈 Success Metrics
### Phase 1 Goals (Current)
- ✅ Persona defaults auto-apply for onboarded users
- ✅ Research persona enriches backend research
- ✅ Exa preferred for all research modes
- ✅ Provider status clearly visible
### Phase 2 Goals (Next)
- ⏳ AI query enhancement reduces query refinement time
- ⏳ Smart presets increase research efficiency
- ⏳ Date range filtering improves result relevance
---
## 🎯 Recommendations for Testing
1. **Test with Real User Accounts**:
- New user (no onboarding)
- User with completed onboarding
- User with research persona generated
2. **Test Provider Scenarios**:
- All providers available
- Only Exa available
- Only Tavily available
- Only Google available
3. **Test Persona Integration**:
- Verify persona defaults apply on wizard load
- Verify backend persona enrichment works
- Check backend logs for persona application
4. **Test Edge Cases**:
- localStorage with saved state
- Network errors during config fetch
- Missing research persona
- Provider API failures
---
## 📝 Summary
**Phase 1 Implementation**: ✅ **COMPLETE**
**Key Achievements**:
- Persona-aware defaults integrated (frontend + backend)
- Research persona enriches research context
- Exa-first provider selection for all modes
- Visual status indicators working correctly
- Domain suggestions auto-populate
**Ready for Testing**: ✅ Yes
**Next Steps**:
1. End-user testing (current focus)
2. Phase 2: AI Query Enhancement
3. Phase 2: Research Persona Presets Display
4. Phase 2: Date Range & Source Type Filtering
---
## 🚀 Phase 2 Implementation Plan (User-Clarified Requirements)
### Understanding the Flow
```
┌─────────────────────────────────────────────────────────────────────┐
│ USER JOURNEY │
├─────────────────────────────────────────────────────────────────────┤
│ 1. User signs up → MUST complete onboarding (mandatory) │
│ └── Creates: Core Persona, Blog Persona, (opt) Social Personas │
│ │
│ 2. User accesses Dashboard/Tools (only after onboarding) │
│ │
│ 3. User visits Researcher (first time) │
│ └── Research Persona does NOT exist yet │
│ └── System GENERATES Research Persona from Core Persona │
│ └── Stores in onboarding database │
│ │
│ 4. User visits Researcher (subsequent times) │
│ └── Research Persona loaded from cache/database │
│ └── NO fallback to "General" - always use persona │
└─────────────────────────────────────────────────────────────────────┘
```
### Key User Requirements
1. **Onboarding is mandatory** - Users cannot access tools without completing onboarding
2. **Core persona always exists** - After onboarding, core persona + blog persona are guaranteed
3. **Research persona generated on first use** - NOT during onboarding
4. **Never fallback to "General"** - Always use persona data for hyper-personalization
5. **Pre-fill Exa/Tavily options** - Make research easier for non-technical users
6. **AI analysis personalized** - Use persona to customize research result presentation
---
### Phase 2 Changes Required
#### 1. Backend - Generate Research Persona on First Visit
**File**: `backend/services/research/core/research_engine.py`
**Current Code (Phase 1)**:
```python
persona = persona_service.get_cached_only(user_id) # Never generates
```
**Phase 2 Change**:
```python
persona = persona_service.get_or_generate(user_id) # Generates if missing
```
**Impact**:
- First-time users get research persona generated automatically
- Subsequent users get cached persona (7-day TTL)
- LLM API call cost on first research execution
---
#### 2. Backend - `/api/research/persona-defaults` Enhancement
**File**: `backend/api/research_config.py`
**Current Behavior**:
- Uses core persona from onboarding
- Falls back to "General" if not found
**Phase 2 Change**:
1. Check if research persona exists
2. If yes → Use research persona fields
3. If no → Use core persona fields (never "General")
4. Optionally trigger research persona generation in background
**Why**: Research persona has better defaults (suggested_exa_domains, suggested_exa_category, research_angles) than core persona.
---
#### 3. Frontend - Ensure Persona Always Loaded
**File**: `frontend/src/components/Research/steps/ResearchInput.tsx`
**Current Behavior**:
- Applies persona defaults if fields are "General"
- Falls back to "General" if persona API fails
**Phase 2 Change**:
1. Remove fallback to "General"
2. Show loading state until persona is loaded
3. If persona fails, show error with retry option
4. Never proceed with "General" values
---
#### 4. Frontend - First Visit Detection
**File**: `frontend/src/components/Research/ResearchWizard.tsx` or `useResearchWizard.ts`
**Phase 2 Addition**:
1. Check if research persona exists on mount
2. If not → Show "Generating your personalized research settings..." loading state
3. Call `/api/research/research-persona` to trigger generation
4. Once complete → Load persona defaults into wizard
---
#### 5. Remove All "General" Fallbacks
**Files to Update**:
- `ResearchInput.tsx` - Remove "General" default values
- `useResearchWizard.ts` - Remove "General" from `defaultState`
- `researchConfig.ts` - Remove empty fallback for `PersonaDefaults`
- `research_engine.py` - Remove context creation without personalization
**Why**: User explicitly stated "no fallback to General" - always use persona data.
---
### Implementation Order
#### Step 1: Backend - Enable Research Persona Generation on First Use
```
File: backend/services/research/core/research_engine.py
Change: get_cached_only() → get_or_generate()
Risk: LLM API cost on first research
Mitigation: Rate limiting already in place
```
#### Step 2: Backend - Enhance Persona Defaults Endpoint
```
File: backend/api/research_config.py
Change: Use research persona fields if available
Why: Research persona has richer defaults
```
#### Step 3: Frontend - First Visit Research Persona Generation Flow
```
Files: ResearchWizard.tsx, useResearchWizard.ts
Change: Add generation flow for first-time users
UX: Show friendly loading state during generation
```
#### Step 4: Remove "General" Fallbacks
```
Files: Multiple frontend and backend files
Change: Replace "General" with persona-derived values
Why: Hyper-personalization requirement
```
#### Step 5: Pre-fill Advanced Exa/Tavily Options
```
Files: ResearchInput.tsx, ExaOptions.tsx, TavilyOptions.tsx
Change: Auto-populate from research persona
Why: Simplify UI for non-technical users
```
---
### Testing Checklist for Phase 2
#### Test Scenario 1: First-Time Researcher User
- [ ] User completes onboarding (has core persona, blog persona)
- [ ] User visits Researcher for first time
- [ ] Shows "Generating personalized research settings..." loading
- [ ] Research persona is generated (check backend logs)
- [ ] Wizard fields auto-populate with persona data (NOT "General")
- [ ] Execute research → verify persona enrichment in backend
#### Test Scenario 2: Returning Researcher User
- [ ] User with existing research persona visits Researcher
- [ ] Persona loaded from cache (no generation)
- [ ] Wizard fields auto-populate correctly
- [ ] Execute research → verify cached persona used
#### Test Scenario 3: Expired Cache
- [ ] User with expired research persona (>7 days) visits Researcher
- [ ] Persona is regenerated (check backend logs)
- [ ] New persona used for research
#### Test Scenario 4: No "General" Values
- [ ] Verify industry is never "General"
- [ ] Verify target audience is never "General"
- [ ] Verify Exa domains/category are always populated
- [ ] Verify Tavily options are pre-filled
---
### API Flow Diagram
```
┌─────────────────────────────────────────────────────────────────────┐
│ PHASE 2 API FLOW │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ User Opens Researcher │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────┐ │
│ │ GET /api/research/persona-defaults │ │
│ │ + GET /api/research/providers/status │
│ └─────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────┐ │
│ │ Backend checks research persona │ │
│ │ exists in cache/database? │ │
│ └─────────────────────────────────────┘ │
│ │ │
│ ┌────┴────┐ │
│ YES NO │
│ │ │ │
│ ▼ ▼ │
│ ┌──────┐ ┌───────────────────────────┐ │
│ │Return│ │ Generate research persona │ │
│ │cached│ │ from core persona (LLM) │ │
│ │data │ │ Save to database │ │
│ └──────┘ │ Return generated data │ │
│ │ └───────────────────────────┘ │
│ │ │ │
│ └────┬─────┘ │
│ ▼ │
│ ┌─────────────────────────────────────┐ │
│ │ Frontend receives persona defaults │ │
│ │ (industry, audience, domains, etc.) │ │
│ └─────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────┐ │
│ │ Auto-populate wizard fields │ │
│ │ (NO "General" values) │ │
│ └─────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ User Executes Research │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────┐ │
│ │ POST /api/research/start │ │
│ │ (ResearchEngine.research()) │ │
│ └─────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────┐ │
│ │ Backend enriches context with │ │
│ │ research persona (cached) │ │
│ │ → AI optimizes Exa/Tavily params │ │
│ │ → Executes research │ │
│ │ → AI analyzes results (personalized)│ │
│ └─────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────┐ │
│ │ Return personalized research results│ │
│ └─────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────┘
```
---
### Benefits of Phase 2
1. **Zero Configuration for Users**: Research works out-of-box with personalized settings
2. **Hyper-Personalization**: Every research is tailored to user's industry and audience
3. **No Technical Complexity**: Exa/Tavily options pre-filled, hidden from users
4. **Consistent Experience**: No "General" fallbacks - always meaningful defaults
5. **AI-Optimized Results**: Research output digestible and relevant to user's needs
---
**Document Version**: 1.1
**Last Updated**: 2025-01-29
**Phase 2 Status**: Ready for Implementation