Base code

This commit is contained in:
Kunthawat Greethong
2026-01-08 22:39:53 +07:00
parent 697115c61a
commit c35fa52117
2169 changed files with 626670 additions and 0 deletions

View File

@@ -0,0 +1,258 @@
# Advanced Usage - Developers
This guide covers advanced ALwrity features and techniques for developers who want to build sophisticated content generation and management systems.
## 🎯 What You'll Accomplish
By the end of this guide, you'll have:
- ✅ Implemented advanced ALwrity features in your applications
- ✅ Built custom AI workflows and automation
- ✅ Optimized performance and scalability
- ✅ Created enterprise-grade content management systems
## ⏱️ Time Required: 2-3 hours
## 🚀 Advanced API Features
### Custom AI Model Integration
#### Fine-tuned Models
ALwrity allows you to create custom AI models for specific use cases:
**Creating Custom Models**
- **Training Data**: Upload your specific content examples
- **Model Types**: Content generation, SEO analysis, research
- **Performance Tuning**: Optimize parameters for your use case
**Benefits**
- **Better Accuracy**: Models trained on your specific content
- **Brand Voice**: Maintain consistent tone and style
- **Domain Expertise**: Specialized knowledge for your industry
#### Model Performance Optimization
- **Parameter Tuning**: Adjust temperature, top_p, and max_tokens
- **A/B Testing**: Compare different model configurations
- **Performance Metrics**: Track quality scores and user satisfaction
### Advanced Content Generation
#### Multi-Modal Content Generation
Create content with multiple media types:
**Supported Media Types**
- **Text Content**: Blog posts, articles, social media posts
- **Images**: AI-generated images for your content
- **Videos**: Video scripts and descriptions
- **Audio**: Podcast scripts and voice-over content
**Use Cases**
- **Rich Blog Posts**: Text + images + videos
- **Social Media Campaigns**: Posts + visuals + stories
- **Marketing Materials**: Comprehensive content packages
#### Content Personalization Engine
Build personalized content experiences:
**User Profiling**
- **Preferences**: Tone, length, style preferences
- **Behavior Data**: Engagement patterns and content history
- **Demographics**: Target audience characteristics
**Personalization Features**
- **Dynamic Content**: Adjust content based on user profile
- **A/B Testing**: Test different content variations
- **Performance Tracking**: Monitor personalization effectiveness
### Advanced SEO and Analytics
#### Real-time SEO Optimization
Optimize content in real-time based on performance data:
**SEO Features**
- **Keyword Density**: Automatic keyword optimization
- **Content Length**: Adjust length based on performance
- **Readability**: Improve content readability scores
- **Meta Tags**: Generate optimized titles and descriptions
**Analytics Integration**
- **Performance Tracking**: Monitor content performance
- **User Behavior**: Analyze how users interact with content
- **Conversion Tracking**: Track content-to-conversion rates
#### Advanced Analytics Dashboard
Comprehensive reporting and insights:
**Metrics Tracked**
- **Content Performance**: Views, engagement, shares
- **SEO Rankings**: Search engine position tracking
- **User Engagement**: Time on page, bounce rate
- **Conversion Rates**: Content-to-action conversion
**Insights Generated**
- **Performance Insights**: What's working well
- **Optimization Suggestions**: How to improve content
- **Trend Analysis**: Performance patterns over time
## 🚀 Performance Optimization
### Caching and CDN Integration
Improve performance with intelligent caching:
**Caching Strategies**
- **API Response Caching**: Cache frequently requested data
- **Content Caching**: Store generated content for reuse
- **CDN Integration**: Distribute content globally
**Implementation**
- **Redis Caching**: Fast in-memory data storage
- **Browser Caching**: Client-side content caching
- **CDN Distribution**: Global content delivery
### Asynchronous Processing
Handle multiple requests efficiently:
**Async Features**
- **Concurrent Requests**: Process multiple content requests
- **Background Processing**: Handle long-running tasks
- **Queue Management**: Manage request queues efficiently
**Benefits**
- **Better Performance**: Handle more requests simultaneously
- **Improved User Experience**: Faster response times
- **Scalability**: Handle traffic spikes effectively
## 🎯 Enterprise Features
### Multi-tenant Architecture
Support multiple organizations:
**Tenant Management**
- **Isolated Data**: Separate data for each tenant
- **Custom Configuration**: Tenant-specific settings
- **Resource Allocation**: Manage resources per tenant
**Use Cases**
- **SaaS Platforms**: Multiple customers on one platform
- **Agency Management**: Manage multiple client accounts
- **Enterprise Deployments**: Department-specific configurations
### Advanced Security Features
Enterprise-grade security:
**Security Features**
- **Data Encryption**: Encrypt sensitive data
- **Access Control**: Role-based permissions
- **Audit Logging**: Track all user actions
- **Compliance**: GDPR, SOC 2, ISO 27001 compliance
**Implementation**
- **JWT Authentication**: Secure token-based auth
- **API Rate Limiting**: Prevent abuse and attacks
- **Input Validation**: Sanitize all user inputs
## 📊 Testing and Quality Assurance
### Advanced Testing Strategies
Comprehensive testing approaches:
**Testing Types**
- **Unit Testing**: Test individual components
- **Integration Testing**: Test API integrations
- **Performance Testing**: Load and stress testing
- **Security Testing**: Vulnerability assessment
**Best Practices**
- **Automated Testing**: Continuous testing in CI/CD
- **Test Coverage**: Ensure comprehensive test coverage
- **Performance Monitoring**: Track performance metrics
### Quality Assurance
Maintain high content quality:
**Quality Metrics**
- **Content Quality**: AI-powered quality assessment
- **User Satisfaction**: Feedback and rating systems
- **Performance Metrics**: Engagement and conversion rates
**Quality Control**
- **Automated Review**: AI-powered content review
- **Human Oversight**: Manual quality checks
- **Feedback Loops**: Continuous improvement processes
## 🚀 Monitoring and Analytics
### Application Monitoring
Track system performance:
**Monitoring Tools**
- **Performance Metrics**: Response times, throughput
- **Error Tracking**: Monitor and alert on errors
- **Resource Usage**: CPU, memory, disk usage
**Alerting**
- **Performance Alerts**: Notify on performance issues
- **Error Alerts**: Immediate error notifications
- **Capacity Alerts**: Resource usage warnings
### Business Analytics
Track business metrics:
**Key Metrics**
- **Content Performance**: Views, engagement, conversions
- **User Behavior**: How users interact with content
- **ROI Tracking**: Return on investment for content
**Reporting**
- **Real-time Dashboards**: Live performance monitoring
- **Scheduled Reports**: Automated performance reports
- **Custom Analytics**: Tailored metrics for your business
## 🆘 Advanced Troubleshooting
### Performance Debugging
Identify and fix performance issues:
**Debugging Tools**
- **Performance Profiling**: Identify bottlenecks
- **Memory Analysis**: Track memory usage
- **Database Optimization**: Query performance analysis
**Common Issues**
- **Slow API Responses**: Optimize database queries
- **High Memory Usage**: Implement caching strategies
- **Rate Limiting**: Optimize API usage patterns
### Security Issues
Address security concerns:
**Security Monitoring**
- **Threat Detection**: Monitor for security threats
- **Access Logging**: Track user access patterns
- **Vulnerability Scanning**: Regular security assessments
**Incident Response**
- **Security Alerts**: Immediate threat notifications
- **Response Procedures**: Documented incident response
- **Recovery Plans**: Business continuity planning
## 🎯 Next Steps
### Immediate Actions (This Week)
1. **Implement advanced features** in your application
2. **Set up monitoring and analytics** for performance tracking
3. **Create custom workflows** using advanced API features
4. **Test and optimize** your implementation
### This Month
1. **Build enterprise-grade features** like multi-tenancy and security
2. **Optimize performance** with caching and async processing
3. **Create comprehensive testing** strategies
4. **Implement monitoring and alerting** for production systems
## 🚀 Ready for More?
**[Learn about deployment →](deployment.md)**
---
*Questions? [Join our community](https://github.com/AJaySi/ALwrity/discussions) or [contact support](mailto:support@alwrity.com)!*

View File

@@ -0,0 +1,498 @@
# Self-Host Setup - Developers
Get ALwrity running on your local machine in just 2 hours. This guide will help you set up the development environment and understand the self-hosted architecture.
## 🎯 What You'll Accomplish
By the end of this guide, you'll have:
- ✅ ALwrity running locally on your machine
- ✅ Backend API server accessible at localhost:8000
- ✅ Frontend dashboard accessible at localhost:3000
- ✅ Configured API keys for AI services
- ✅ Made your first API call to test the setup
## ⏱️ Time Required: 2 hours
## 🚀 Step-by-Step Setup
### Step 1: Prerequisites Check (10 minutes)
Before we start, ensure you have the following installed:
#### Required Software
- **Python 3.8+**: [Download Python](https://www.python.org/downloads/)
- **Node.js 18+**: [Download Node.js](https://nodejs.org/)
- **Git**: [Download Git](https://git-scm.com/downloads)
#### Verify Installation
```bash
# Check Python version
python --version
# Should show Python 3.8 or higher
# Check Node.js version
node --version
# Should show v18 or higher
# Check Git
git --version
# Should show Git version
```
### Step 2: Clone ALwrity Repository (5 minutes)
1. **Clone the repository**:
```bash
git clone https://github.com/AJaySi/ALwrity.git
cd ALwrity
```
2. **Verify the download**:
You should see folders: `backend`, `frontend`, `docs`, etc.
3. **Check the structure**:
```bash
ls -la
# Should show backend/, frontend/, docs/, etc.
```
### Step 3: Backend Setup (30 minutes)
#### Install Python Dependencies
```bash
cd backend
pip install -r requirements.txt
```
#### Configure Environment Variables
1. **Copy the template**:
```bash
cp env_template.txt .env
```
2. **Edit the `.env` file** with your API keys:
```bash
# Required API Keys
GEMINI_API_KEY=your_gemini_api_key_here
OPENAI_API_KEY=your_openai_api_key_here
# Optional but recommended
TAVILY_API_KEY=your_tavily_api_key_here
SERPER_API_KEY=your_serper_api_key_here
# Database (default is fine)
DATABASE_URL=sqlite:///./alwrity.db
# Security
SECRET_KEY=your_secret_key_here
```
#### Get Your API Keys
**Gemini API Key** (Required):
1. Go to [Google AI Studio](https://aistudio.google.com/app/apikey)
2. Create a new API key
3. Copy and paste into your `.env` file
**OpenAI API Key** (Required):
1. Go to [OpenAI Platform](https://platform.openai.com/api-keys)
2. Create a new API key
3. Copy and paste into your `.env` file
#### Start the Backend Server
```bash
python start_alwrity_backend.py
```
You should see:
```
INFO: Started server process
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://127.0.0.1:8000
```
### Step 4: Make Your First API Call (10 minutes)
#### Option A: Using cURL
```bash
# Test API connection
curl -X GET "https://api.alwrity.com/v1/health" \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json"
```
#### Option B: Using Python
```python
import requests
# Set up your API key
API_KEY = "your_api_key_here"
BASE_URL = "https://api.alwrity.com/v1"
# Test API connection
response = requests.get(
f"{BASE_URL}/health",
headers={
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
)
print(f"Status: {response.status_code}")
print(f"Response: {response.json()}")
```
#### Option C: Using JavaScript
```javascript
// Set up your API key
const API_KEY = "your_api_key_here";
const BASE_URL = "https://api.alwrity.com/v1";
// Test API connection
fetch(`${BASE_URL}/health`, {
method: "GET",
headers: {
"Authorization": `Bearer ${API_KEY}`,
"Content-Type": "application/json"
}
})
.then(response => response.json())
.then(data => console.log(data))
.catch(error => console.error("Error:", error));
```
### Step 5: Create Your First Content (8 minutes)
#### Generate a Blog Post
```python
import requests
# Set up your API key
API_KEY = "your_api_key_here"
BASE_URL = "https://api.alwrity.com/v1"
# Create content request
content_request = {
"type": "blog_post",
"topic": "Getting Started with ALwrity API",
"key_points": [
"What is ALwrity API",
"How to get started",
"Basic API usage",
"Next steps"
],
"tone": "professional",
"length": "medium",
"seo_optimized": True
}
# Make API call
response = requests.post(
f"{BASE_URL}/content/generate",
headers={
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
},
json=content_request
)
if response.status_code == 200:
content = response.json()
print("Generated content:")
print(content["data"]["content"])
else:
print(f"Error: {response.status_code}")
print(response.json())
```
#### Generate Social Media Content
```python
# Create social media content request
social_request = {
"type": "social_media",
"platform": "linkedin",
"topic": "ALwrity API Launch",
"tone": "professional",
"include_hashtags": True,
"include_cta": True
}
# Make API call
response = requests.post(
f"{BASE_URL}/content/generate",
headers={
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
},
json=social_request
)
if response.status_code == 200:
content = response.json()
print("Generated social media content:")
print(content["data"]["content"])
else:
print(f"Error: {response.status_code}")
print(response.json())
```
## 🔧 API Structure Overview
### Base URL
```
https://api.alwrity.com/v1
```
### Authentication
All API requests require authentication using your API key:
```bash
Authorization: Bearer YOUR_API_KEY
```
### Common Endpoints
#### Content Generation
```bash
POST /content/generate
POST /content/generate/batch
GET /content/{content_id}
PUT /content/{content_id}
DELETE /content/{content_id}
```
#### Persona Management
```bash
GET /personas
POST /personas
GET /personas/{persona_id}
PUT /personas/{persona_id}
DELETE /personas/{persona_id}
```
#### Analytics
```bash
GET /analytics/usage
GET /analytics/performance
GET /analytics/content/{content_id}
```
### Response Format
All API responses follow this format:
```json
{
"success": true,
"data": {
// Response data here
},
"meta": {
"request_id": "req_1234567890",
"timestamp": "2024-01-15T10:30:00Z",
"rate_limit": {
"limit": 1000,
"remaining": 999,
"reset": 1642248600
}
}
}
```
## 🎯 Common Use Cases
### 1. Automated Blog Post Generation
```python
def generate_blog_post(topic, key_points):
request_data = {
"type": "blog_post",
"topic": topic,
"key_points": key_points,
"tone": "professional",
"length": "long",
"seo_optimized": True,
"include_research": True
}
response = requests.post(
f"{BASE_URL}/content/generate",
headers={"Authorization": f"Bearer {API_KEY}"},
json=request_data
)
return response.json()["data"]["content"]
```
### 2. Social Media Content Automation
```python
def generate_social_content(platform, topic):
request_data = {
"type": "social_media",
"platform": platform,
"topic": topic,
"tone": "engaging",
"include_hashtags": True,
"include_cta": True
}
response = requests.post(
f"{BASE_URL}/content/generate",
headers={"Authorization": f"Bearer {API_KEY}"},
json=request_data
)
return response.json()["data"]["content"]
```
### 3. Batch Content Generation
```python
def generate_multiple_posts(topics):
request_data = {
"type": "blog_post",
"topics": topics,
"tone": "professional",
"length": "medium",
"seo_optimized": True
}
response = requests.post(
f"{BASE_URL}/content/generate/batch",
headers={"Authorization": f"Bearer {API_KEY}"},
json=request_data
)
return response.json()["data"]["content"]
```
## 🚨 Error Handling
### Common Error Codes
```python
def handle_api_response(response):
if response.status_code == 200:
return response.json()["data"]
elif response.status_code == 401:
raise Exception("Invalid API key")
elif response.status_code == 429:
raise Exception("Rate limit exceeded")
elif response.status_code == 400:
raise Exception(f"Bad request: {response.json()['error']}")
elif response.status_code == 500:
raise Exception("Internal server error")
else:
raise Exception(f"Unexpected error: {response.status_code}")
```
### Rate Limiting
ALwrity API has rate limits to ensure fair usage:
- **Free tier**: 100 requests per hour
- **Pro tier**: 1,000 requests per hour
- **Enterprise**: Custom limits
```python
import time
def make_api_call_with_retry(request_data, max_retries=3):
for attempt in range(max_retries):
response = requests.post(
f"{BASE_URL}/content/generate",
headers={"Authorization": f"Bearer {API_KEY}"},
json=request_data
)
if response.status_code == 200:
return response.json()
elif response.status_code == 429:
# Rate limited, wait and retry
time.sleep(60)
continue
else:
raise Exception(f"API error: {response.status_code}")
raise Exception("Max retries exceeded")
```
## 🎉 Congratulations!
You've successfully:
- ✅ Set up your developer account
- ✅ Obtained your API keys
- ✅ Made your first API call
- ✅ Generated content via API
- ✅ Understood the API structure
## 🚀 Next Steps
### Immediate Actions (Today)
1. **[Build your first integration](integration-guide.md)** - Create a complete integration
2. **Test different content types** - Try blog posts, social media, emails
3. **Explore advanced features** - Use personas, analytics, webhooks
4. **Join the developer community** - Connect with other developers
### This Week
1. **[Implement advanced features](advanced-usage.md)** - Use webhooks and real-time updates
2. **Build error handling** - Implement robust error handling
3. **Add monitoring** - Track API usage and performance
4. **Test in staging** - Deploy to a staging environment
### This Month
1. **[Deploy to production](deployment.md)** - Deploy your integration
2. **[Optimize performance](performance-optimization.md)** - Improve speed and efficiency
3. **[Scale your integration](scaling.md)** - Handle more users and content
4. **[Contribute to the community](contributing.md)** - Share your integrations
## 🆘 Need Help?
### Common Questions
**Q: How do I handle API errors?**
A: Check the status code and error message. Implement retry logic for rate limits and temporary errors.
**Q: What's the difference between development and production API keys?**
A: Development keys have lower rate limits and are for testing. Production keys are for live applications.
**Q: How do I monitor my API usage?**
A: Use the `/analytics/usage` endpoint to track your API usage and remaining quota.
**Q: Can I use webhooks for real-time updates?**
A: Yes! ALwrity supports webhooks for real-time notifications about content generation and updates.
### Getting Support
- **[API Documentation](https://docs.alwrity.com/api)** - Complete API reference
- **[Code Examples](https://github.com/alwrity/examples)** - Sample integrations
- **[Developer Community](https://github.com/AJaySi/ALwrity/discussions)** - Ask questions and get help
- **[Email Support](mailto:developers@alwrity.com)** - Get personalized help
## 🎯 Success Tips
### For Best Results
1. **Use appropriate rate limiting** - Don't exceed your quota
2. **Implement error handling** - Handle all possible error cases
3. **Cache responses** - Cache content to reduce API calls
4. **Monitor usage** - Track your API usage and costs
### Common Mistakes to Avoid
1. **Don't hardcode API keys** - Use environment variables
2. **Don't ignore rate limits** - Implement proper rate limiting
3. **Don't skip error handling** - Always handle API errors
4. **Don't forget to test** - Test your integration thoroughly
## 🎉 Ready for More?
**[Build your first integration →](integration-guide.md)**
---
*Questions? [Join our developer community](https://github.com/AJaySi/ALwrity/discussions) or [contact developer support](mailto:developers@alwrity.com)!*

View File

@@ -0,0 +1,365 @@
# Codebase Exploration for Developers
## 🎯 Overview
This guide helps developers understand and navigate the ALwrity codebase. You'll learn the architecture, key components, and how to effectively explore and contribute to the project.
## 🚀 What You'll Achieve
### Codebase Understanding
- **Architecture Overview**: Understand the overall system architecture
- **Component Navigation**: Navigate key components and modules
- **Code Organization**: Understand code organization and patterns
- **Development Workflow**: Learn the development workflow and practices
### Contribution Readiness
- **Code Standards**: Understand coding standards and conventions
- **Testing Practices**: Learn testing practices and frameworks
- **Documentation**: Understand documentation standards
- **Contribution Process**: Learn how to contribute effectively
## 📋 Project Structure
### Repository Organization
```
alwrity/
├── backend/ # Python FastAPI backend
│ ├── api/ # API endpoints and routes
│ ├── models/ # Database models
│ ├── services/ # Business logic services
│ ├── middleware/ # Custom middleware
│ └── utils/ # Utility functions
├── frontend/ # React TypeScript frontend
│ ├── src/
│ │ ├── components/ # React components
│ │ ├── hooks/ # Custom React hooks
│ │ ├── services/ # API services
│ │ └── utils/ # Frontend utilities
├── docs/ # Project documentation
└── tests/ # Test suites
```
### Backend Architecture
**FastAPI Application**:
- **Main App**: `backend/app.py` - Main FastAPI application
- **Routers**: `backend/routers/` - API route modules
- **Models**: `backend/models/` - Database and Pydantic models
- **Services**: `backend/services/` - Business logic layer
**Key Components**:
- **SEO Dashboard**: SEO analysis and optimization tools
- **Blog Writer**: AI-powered content creation
- **LinkedIn Writer**: LinkedIn content generation
- **Content Planning**: Content strategy and planning tools
### Frontend Architecture
**React Application**:
- **Components**: Modular React components
- **State Management**: React hooks and context
- **Routing**: React Router for navigation
- **Styling**: CSS modules and styled components
**Key Features**:
- **SEO Dashboard UI**: SEO analysis interface
- **Blog Writer UI**: Content creation interface
- **Content Planning UI**: Strategy planning interface
- **User Management**: Authentication and user management
## 🛠️ Key Components
### Backend Components
#### API Layer (`backend/api/`)
**SEO Dashboard API**:
```python
# backend/api/seo_dashboard.py
@app.get("/api/seo-dashboard/data")
async def get_seo_dashboard_data():
"""Get complete SEO dashboard data."""
return await seo_service.get_dashboard_data()
```
**Blog Writer API**:
```python
# backend/api/blog_writer/router.py
@router.post("/research/start")
async def start_research(request: BlogResearchRequest):
"""Start research operation."""
return await research_service.start_research(request)
```
#### Models (`backend/models/`)
**Database Models**:
```python
# backend/models/user.py
class User(BaseModel):
id: int
email: str
created_at: datetime
subscription_tier: SubscriptionTier
```
**Pydantic Models**:
```python
# backend/models/requests.py
class SEOAnalysisRequest(BaseModel):
url: str
target_keywords: List[str]
analysis_type: str
```
#### Services (`backend/services/`)
**Business Logic**:
```python
# backend/services/seo_analyzer.py
class SEOAnalyzer:
async def analyze_url(self, url: str) -> SEOAnalysis:
"""Analyze URL for SEO performance."""
# Implementation here
```
### Frontend Components
#### React Components (`frontend/src/components/`)
**SEO Dashboard**:
```typescript
// frontend/src/components/SEODashboard/SEODashboard.tsx
export const SEODashboard: React.FC = () => {
const [dashboardData, setDashboardData] = useState<SEODashboardData>();
// Component implementation
};
```
**Blog Writer**:
```typescript
// frontend/src/components/BlogWriter/BlogWriter.tsx
export const BlogWriter: React.FC = () => {
const { research, outline, sections } = useBlogWriterState();
// Component implementation
};
```
#### Custom Hooks (`frontend/src/hooks/`)
**API Hooks**:
```typescript
// frontend/src/hooks/useSEOData.ts
export const useSEOData = () => {
const [data, setData] = useState<SEODashboardData>();
// Hook implementation
};
```
## 📊 Development Workflow
### Getting Started
**Development Setup**:
```bash
# Clone repository
git clone https://github.com/your-org/alwrity.git
cd alwrity
# Backend setup
cd backend
python -m venv venv
source venv/bin/activate # or venv\Scripts\activate on Windows
pip install -r requirements.txt
# Frontend setup
cd ../frontend
npm install
```
**Running Development Servers**:
```bash
# Backend (Terminal 1)
cd backend
uvicorn app:app --reload --host 0.0.0.0 --port 8000
# Frontend (Terminal 2)
cd frontend
npm start
```
### Code Standards
**Python Standards**:
- **PEP 8**: Python style guide compliance
- **Type Hints**: Use type hints for all functions
- **Docstrings**: Document all functions and classes
- **Black**: Code formatting with Black
**TypeScript Standards**:
- **ESLint**: Code linting and quality
- **Prettier**: Code formatting
- **TypeScript Strict**: Strict type checking
- **Component Documentation**: JSDoc for components
### Testing Practices
**Backend Testing**:
```python
# tests/test_seo_dashboard.py
import pytest
from fastapi.testclient import TestClient
def test_seo_dashboard_data(client: TestClient):
response = client.get("/api/seo-dashboard/data")
assert response.status_code == 200
```
**Frontend Testing**:
```typescript
// src/components/__tests__/SEODashboard.test.tsx
import { render, screen } from '@testing-library/react';
import { SEODashboard } from '../SEODashboard';
test('renders SEO dashboard', () => {
render(<SEODashboard />);
expect(screen.getByText('SEO Dashboard')).toBeInTheDocument();
});
```
## 🎯 Key Features Deep Dive
### SEO Dashboard
**Architecture**:
- **Backend**: FastAPI endpoints for SEO analysis
- **Frontend**: React components for data visualization
- **Services**: SEO analysis algorithms and Google Search Console integration
**Key Files**:
- `backend/api/seo_dashboard.py` - API endpoints
- `backend/services/seo_analyzer.py` - SEO analysis logic
- `frontend/src/components/SEODashboard/` - UI components
### Blog Writer
**Architecture**:
- **Research**: Web research and fact-checking
- **Outline Generation**: AI-powered content structure
- **Content Generation**: Section-by-section content creation
- **SEO Integration**: Built-in SEO optimization
**Key Files**:
- `backend/api/blog_writer/` - Blog writer API
- `backend/services/content_generator.py` - Content generation logic
- `frontend/src/components/BlogWriter/` - Content creation UI
### Content Planning
**Architecture**:
- **Strategy Development**: Content strategy planning
- **Calendar Management**: Content calendar and scheduling
- **Persona Management**: User persona development
- **Analytics Integration**: Performance tracking
## 🛠️ Development Tools
### Backend Tools
**Development Tools**:
- **FastAPI**: Web framework with automatic API documentation
- **SQLAlchemy**: Database ORM and migrations
- **Pydantic**: Data validation and serialization
- **Alembic**: Database migration management
**Testing Tools**:
- **pytest**: Testing framework
- **pytest-asyncio**: Async testing support
- **httpx**: HTTP client for testing
- **factory_boy**: Test data factories
### Frontend Tools
**Development Tools**:
- **React**: UI library with hooks
- **TypeScript**: Type-safe JavaScript
- **React Router**: Client-side routing
- **Axios**: HTTP client for API calls
**Testing Tools**:
- **Jest**: Testing framework
- **React Testing Library**: Component testing
- **MSW**: API mocking
- **Cypress**: End-to-end testing
## 📈 Contributing Guidelines
### Code Contribution Process
**Branch Strategy**:
```bash
# Create feature branch
git checkout -b feature/new-feature
# Make changes and commit
git add .
git commit -m "feat: add new feature"
# Push and create PR
git push origin feature/new-feature
```
**Pull Request Process**:
1. **Code Review**: All code must be reviewed
2. **Testing**: All tests must pass
3. **Documentation**: Update documentation as needed
4. **CI/CD**: Continuous integration must pass
### Documentation Standards
**Code Documentation**:
- **Docstrings**: Document all functions and classes
- **Type Hints**: Use type hints for clarity
- **Comments**: Explain complex logic
- **README**: Keep README files updated
**API Documentation**:
- **OpenAPI**: Automatic API documentation
- **Examples**: Provide usage examples
- **Error Handling**: Document error responses
- **Authentication**: Document auth requirements
## 🎯 Advanced Topics
### Performance Optimization
**Backend Optimization**:
- **Database Queries**: Optimize database queries
- **Caching**: Implement caching strategies
- **Async Operations**: Use async/await effectively
- **Connection Pooling**: Optimize database connections
**Frontend Optimization**:
- **Bundle Optimization**: Optimize JavaScript bundles
- **Lazy Loading**: Implement lazy loading for components
- **Memoization**: Use React.memo and useMemo
- **Code Splitting**: Implement code splitting
### Security Considerations
**Backend Security**:
- **Authentication**: JWT token authentication
- **Authorization**: Role-based access control
- **Input Validation**: Validate all inputs
- **SQL Injection**: Use parameterized queries
**Frontend Security**:
- **XSS Prevention**: Sanitize user inputs
- **CSRF Protection**: Implement CSRF tokens
- **Content Security Policy**: Set CSP headers
- **Secure Storage**: Use secure storage for tokens
## 🎯 Next Steps
### Immediate Actions (This Week)
1. **Environment Setup**: Set up development environment
2. **Codebase Exploration**: Explore key components and files
3. **First Contribution**: Make your first contribution
4. **Community Engagement**: Join developer community
### Short-Term Planning (This Month)
1. **Feature Development**: Contribute to feature development
2. **Bug Fixes**: Help with bug fixes and improvements
3. **Testing**: Improve test coverage
4. **Documentation**: Improve documentation
### Long-Term Strategy (Next Quarter)
1. **Core Contributor**: Become a core contributor
2. **Feature Ownership**: Own and maintain features
3. **Architecture Decisions**: Participate in architecture decisions
4. **Mentoring**: Mentor new contributors
---
*Ready to explore the codebase? Start with the [API Quickstart](api-quickstart.md) to understand the API structure before diving into the code!*

View File

@@ -0,0 +1,410 @@
# Contributing - Developers
This guide covers how to contribute to the ALwrity project, including development setup, coding standards, and the contribution process.
## 🎯 What You'll Accomplish
By the end of this guide, you'll have:
- ✅ Set up your development environment
- ✅ Understood the contribution process
- ✅ Learned coding standards and best practices
- ✅ Started contributing to the ALwrity project
## ⏱️ Time Required: 1-2 hours
## 🚀 Getting Started
### Development Setup
#### Prerequisites
Before contributing to ALwrity, ensure you have:
**Required Software**
- **Python 3.10+**: For backend development
- **Node.js 18+**: For frontend development
- **Git**: For version control
- **Docker**: For containerized development
- **API Keys**: Gemini, OpenAI, or other AI service keys
#### Fork and Clone
1. **Fork the Repository** - Fork ALwrity on GitHub
2. **Clone Your Fork** - Clone your fork locally
3. **Add Upstream** - Add the main repository as upstream
4. **Create Branch** - Create a feature branch for your changes
```bash
# Fork the repository on GitHub, then:
git clone https://github.com/YOUR_USERNAME/ALwrity.git
cd ALwrity
git remote add upstream https://github.com/AJaySi/ALwrity.git
git checkout -b feature/your-feature-name
```
#### Backend Setup
Set up the backend development environment:
**Install Dependencies**
```bash
cd backend
pip install -r requirements.txt
```
**Environment Configuration**
```bash
# Copy environment template
cp env_template.txt .env
# Configure your API keys
GEMINI_API_KEY=your_gemini_api_key
OPENAI_API_KEY=your_openai_api_key
DATABASE_URL=sqlite:///./alwrity.db
```
**Run Backend**
```bash
python start_alwrity_backend.py
```
#### Frontend Setup
Set up the frontend development environment:
**Install Dependencies**
```bash
cd frontend
npm install
```
**Environment Configuration**
```bash
# Copy environment template
cp env_template.txt .env
# Configure your environment
REACT_APP_API_URL=http://localhost:8000
REACT_APP_COPILOT_API_KEY=your_copilot_api_key
```
**Run Frontend**
```bash
npm start
```
## 📊 Contribution Process
### Issue Management
Before starting work, check for existing issues:
**Finding Issues**
- **Good First Issues**: Look for issues labeled "good first issue"
- **Bug Reports**: Check for bug reports that need fixing
- **Feature Requests**: Review feature requests for implementation
- **Documentation**: Find documentation that needs improvement
**Creating Issues**
- **Bug Reports**: Provide detailed bug reports with steps to reproduce
- **Feature Requests**: Describe the feature and its benefits
- **Documentation**: Identify areas that need better documentation
- **Questions**: Ask questions about implementation or architecture
### Pull Request Process
Follow the pull request process:
**Before Submitting**
1. **Create Issue** - Create an issue for your feature or bug fix
2. **Assign Issue** - Assign the issue to yourself
3. **Create Branch** - Create a feature branch from main
4. **Make Changes** - Implement your changes
5. **Test Changes** - Test your changes thoroughly
6. **Update Documentation** - Update relevant documentation
**Pull Request Guidelines**
- **Clear Title** - Use a clear, descriptive title
- **Detailed Description** - Describe what your PR does and why
- **Link Issues** - Link to related issues
- **Screenshots** - Include screenshots for UI changes
- **Testing** - Describe how you tested your changes
**Review Process**
- **Code Review** - Address reviewer feedback
- **Testing** - Ensure all tests pass
- **Documentation** - Update documentation as needed
- **Merge** - Merge after approval
## 🎯 Coding Standards
### Python Backend Standards
Follow Python coding standards:
**Code Style**
- **PEP 8**: Follow PEP 8 style guidelines
- **Type Hints**: Use type hints for function parameters and return values
- **Docstrings**: Write comprehensive docstrings for functions and classes
- **Error Handling**: Implement proper error handling
**Example Code**
```python
from typing import List, Optional
from fastapi import HTTPException
def generate_blog_content(
topic: str,
keywords: List[str],
target_audience: Optional[str] = None
) -> dict:
"""
Generate blog content using AI.
Args:
topic: The topic for the blog post
keywords: List of keywords to include
target_audience: Target audience for the content
Returns:
Dictionary containing generated content and metadata
Raises:
HTTPException: If content generation fails
"""
try:
# Implementation here
pass
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
```
### TypeScript Frontend Standards
Follow TypeScript coding standards:
**Code Style**
- **ESLint**: Use ESLint for code linting
- **Prettier**: Use Prettier for code formatting
- **TypeScript**: Use strict TypeScript configuration
- **React Best Practices**: Follow React best practices
**Example Code**
```typescript
interface BlogContentProps {
topic: string;
keywords: string[];
targetAudience?: string;
}
const BlogContent: React.FC<BlogContentProps> = ({
topic,
keywords,
targetAudience
}) => {
const [content, setContent] = useState<string>('');
const [loading, setLoading] = useState<boolean>(false);
const generateContent = async (): Promise<void> => {
setLoading(true);
try {
// Implementation here
} catch (error) {
console.error('Error generating content:', error);
} finally {
setLoading(false);
}
};
return (
<div>
{/* Component JSX */}
</div>
);
};
```
### Testing Standards
Write comprehensive tests:
**Backend Testing**
- **Unit Tests**: Test individual functions and methods
- **Integration Tests**: Test API endpoints and database interactions
- **Test Coverage**: Maintain high test coverage
- **Test Data**: Use appropriate test data and fixtures
**Frontend Testing**
- **Component Tests**: Test React components
- **Integration Tests**: Test component interactions
- **E2E Tests**: Test complete user workflows
- **Accessibility Tests**: Test accessibility compliance
## 🚀 Development Workflow
### Git Workflow
Follow the Git workflow:
**Branch Naming**
- **Feature Branches**: `feature/description`
- **Bug Fix Branches**: `bugfix/description`
- **Hotfix Branches**: `hotfix/description`
- **Documentation Branches**: `docs/description`
**Commit Messages**
- **Format**: `type(scope): description`
- **Types**: feat, fix, docs, style, refactor, test, chore
- **Examples**:
- `feat(api): add blog content generation endpoint`
- `fix(ui): resolve button alignment issue`
- `docs(readme): update installation instructions`
**Pull Request Process**
1. **Create Branch** - Create feature branch from main
2. **Make Changes** - Implement your changes
3. **Test Changes** - Run tests and ensure they pass
4. **Commit Changes** - Commit with descriptive messages
5. **Push Branch** - Push branch to your fork
6. **Create PR** - Create pull request to main repository
7. **Address Feedback** - Address reviewer feedback
8. **Merge** - Merge after approval
### Code Review Process
Participate in code reviews:
**As a Reviewer**
- **Check Code Quality** - Review code for quality and standards
- **Test Functionality** - Test the functionality of changes
- **Provide Feedback** - Give constructive feedback
- **Approve Changes** - Approve when ready
**As an Author**
- **Respond to Feedback** - Address reviewer feedback promptly
- **Ask Questions** - Ask questions if feedback is unclear
- **Make Changes** - Implement requested changes
- **Test Changes** - Test changes after addressing feedback
## 📊 Project Structure
### Backend Structure
Understand the backend project structure:
**Key Directories**
- **`api/`**: API endpoint definitions
- **`models/`**: Database models and schemas
- **`services/`**: Business logic and service layer
- **`middleware/`**: Custom middleware and authentication
- **`routers/`**: API route definitions
- **`scripts/`**: Utility scripts and database migrations
**Key Files**
- **`app.py`**: Main FastAPI application
- **`requirements.txt`**: Python dependencies
- **`start_alwrity_backend.py`**: Application startup script
### Frontend Structure
Understand the frontend project structure:
**Key Directories**
- **`src/components/`**: React components
- **`src/pages/`**: Page components
- **`src/services/`**: API service functions
- **`src/utils/`**: Utility functions
- **`src/types/`**: TypeScript type definitions
**Key Files**
- **`package.json`**: Node.js dependencies and scripts
- **`tsconfig.json`**: TypeScript configuration
- **`src/App.tsx`**: Main React application component
## 🎯 Areas for Contribution
### High Priority Areas
Focus on high-priority contribution areas:
**Bug Fixes**
- **Critical Bugs**: Fix bugs that affect core functionality
- **Performance Issues**: Address performance problems
- **Security Issues**: Fix security vulnerabilities
- **UI/UX Issues**: Improve user interface and experience
**Feature Development**
- **New AI Integrations**: Add support for new AI services
- **Content Types**: Add new content generation types
- **Platform Integrations**: Add integrations with new platforms
- **Analytics**: Improve analytics and reporting features
### Documentation
Contribute to documentation:
**User Documentation**
- **User Guides**: Improve user guides and tutorials
- **API Documentation**: Enhance API documentation
- **Installation Guides**: Improve installation instructions
- **Troubleshooting**: Add troubleshooting guides
**Developer Documentation**
- **Code Comments**: Add inline code comments
- **Architecture Docs**: Document system architecture
- **Development Guides**: Improve development setup guides
- **Contributing Guide**: Enhance this contributing guide
### Testing
Improve test coverage:
**Backend Testing**
- **Unit Tests**: Add unit tests for new features
- **Integration Tests**: Add integration tests for APIs
- **Performance Tests**: Add performance tests
- **Security Tests**: Add security tests
**Frontend Testing**
- **Component Tests**: Add component tests
- **E2E Tests**: Add end-to-end tests
- **Accessibility Tests**: Add accessibility tests
- **Visual Tests**: Add visual regression tests
## 🆘 Getting Help
### Community Support
Get help from the community:
**GitHub Discussions**
- **Ask Questions**: Ask questions about implementation
- **Share Ideas**: Share ideas and suggestions
- **Get Feedback**: Get feedback on your contributions
- **Help Others**: Help other contributors
**Discord Community**
- **Real-time Chat**: Chat with other contributors
- **Quick Questions**: Ask quick questions
- **Collaboration**: Collaborate on features
- **Mentorship**: Get mentorship from experienced contributors
### Documentation Resources
Use documentation resources:
**Project Documentation**
- **README**: Start with the main README
- **API Docs**: Check API documentation
- **Architecture Docs**: Understand system architecture
- **Contributing Guide**: Follow this contributing guide
**External Resources**
- **FastAPI Docs**: Learn FastAPI best practices
- **React Docs**: Learn React best practices
- **Python Docs**: Learn Python best practices
- **TypeScript Docs**: Learn TypeScript best practices
## 🎯 Next Steps
### Immediate Actions (This Week)
1. **Set up development environment** and get familiar with the codebase
2. **Find a good first issue** to work on
3. **Make your first contribution** following the guidelines
4. **Join the community** and introduce yourself
### This Month
1. **Contribute regularly** to the project
2. **Help other contributors** and participate in code reviews
3. **Take on larger features** and become a core contributor
4. **Mentor new contributors** and help grow the community
## 🚀 Ready to Contribute?
**[Start with the development setup →](../getting-started/installation.md)**
---
*Questions? [Join our community](https://github.com/AJaySi/ALwrity/discussions) or [contact support](mailto:support@alwrity.com)!*

View File

@@ -0,0 +1,535 @@
# Customization for Developers
## 🎯 Overview
This guide helps developers customize ALwrity for specific needs. You'll learn how to extend functionality, create custom components, integrate with external systems, and tailor the platform to your requirements.
## 🚀 What You'll Achieve
### Custom Development
- **Feature Extensions**: Extend existing features and functionality
- **Custom Components**: Create custom UI components and interfaces
- **API Extensions**: Extend API endpoints and functionality
- **Integration Development**: Develop custom integrations
### Platform Tailoring
- **Brand Customization**: Customize branding and user interface
- **Workflow Customization**: Customize workflows and processes
- **Business Logic**: Implement custom business logic
- **Data Models**: Extend data models and schemas
## 📋 Customization Framework
### Extension Points
**Backend Extensions**:
1. **API Endpoints**: Add custom API endpoints
2. **Services**: Extend or create new services
3. **Models**: Add custom data models
4. **Middleware**: Create custom middleware
**Frontend Extensions**:
- **Components**: Create custom React components
- **Hooks**: Develop custom React hooks
- **Pages**: Add new pages and routes
- **Themes**: Create custom themes and styling
### Customization Levels
**Configuration Customization**:
- **Environment Variables**: Customize via environment settings
- **Feature Flags**: Enable/disable features via configuration
- **UI Themes**: Customize appearance and branding
- **Workflow Settings**: Adjust workflow parameters
**Code Customization**:
- **Plugin Architecture**: Develop plugins for extensibility
- **API Extensions**: Extend API functionality
- **Custom Services**: Implement custom business logic
- **Database Extensions**: Add custom database schemas
## 🛠️ Backend Customization
### API Extensions
**Custom Endpoints**:
```python
# backend/api/custom_endpoints.py
from fastapi import APIRouter
router = APIRouter(prefix="/api/custom", tags=["custom"])
@router.get("/my-feature")
async def my_custom_feature():
"""Custom feature endpoint."""
return {"message": "Custom feature response"}
```
**Service Extensions**:
```python
# backend/services/custom_service.py
class CustomService:
async def process_custom_data(self, data: dict) -> dict:
"""Process custom data."""
# Custom business logic here
return processed_data
```
### Model Extensions
**Custom Models**:
```python
# backend/models/custom_models.py
from sqlalchemy import Column, Integer, String, DateTime
from backend.models.base import Base
class CustomData(Base):
__tablename__ = "custom_data"
id = Column(Integer, primary_key=True)
name = Column(String(255), nullable=False)
created_at = Column(DateTime, default=datetime.utcnow)
```
**Pydantic Models**:
```python
# backend/models/custom_requests.py
from pydantic import BaseModel
class CustomRequest(BaseModel):
field1: str
field2: int
field3: Optional[str] = None
class CustomResponse(BaseModel):
result: str
data: dict
```
### Middleware Customization
**Custom Middleware**:
```python
# backend/middleware/custom_middleware.py
from fastapi import Request
from starlette.middleware.base import BaseHTTPMiddleware
class CustomMiddleware(BaseHTTPMiddleware):
async def dispatch(self, request: Request, call_next):
# Custom middleware logic
response = await call_next(request)
return response
```
## 🎯 Frontend Customization
### Component Development
**Custom Components**:
```typescript
// frontend/src/components/Custom/CustomComponent.tsx
import React from 'react';
interface CustomComponentProps {
title: string;
data: any[];
onAction: (item: any) => void;
}
export const CustomComponent: React.FC<CustomComponentProps> = ({
title,
data,
onAction
}) => {
return (
<div className="custom-component">
<h2>{title}</h2>
{data.map((item, index) => (
<div key={index} onClick={() => onAction(item)}>
{item.name}
</div>
))}
</div>
);
};
```
**Custom Hooks**:
```typescript
// frontend/src/hooks/useCustomData.ts
import { useState, useEffect } from 'react';
export const useCustomData = (endpoint: string) => {
const [data, setData] = useState(null);
const [loading, setLoading] = useState(true);
const [error, setError] = useState(null);
useEffect(() => {
const fetchData = async () => {
try {
const response = await fetch(`/api/custom/${endpoint}`);
const result = await response.json();
setData(result);
} catch (err) {
setError(err);
} finally {
setLoading(false);
}
};
fetchData();
}, [endpoint]);
return { data, loading, error };
};
```
### Theme Customization
**Custom Themes**:
```css
/* frontend/src/themes/custom-theme.css */
:root {
--primary-color: #your-brand-color;
--secondary-color: #your-secondary-color;
--accent-color: #your-accent-color;
--background-color: #your-background-color;
--text-color: #your-text-color;
}
.custom-theme {
--primary-color: var(--primary-color);
--secondary-color: var(--secondary-color);
/* Additional custom variables */
}
```
**Styled Components**:
```typescript
// frontend/src/components/Custom/StyledComponents.tsx
import styled from 'styled-components';
export const CustomContainer = styled.div`
background-color: var(--primary-color);
padding: 2rem;
border-radius: 8px;
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
`;
export const CustomButton = styled.button`
background-color: var(--accent-color);
color: white;
border: none;
padding: 0.5rem 1rem;
border-radius: 4px;
cursor: pointer;
&:hover {
opacity: 0.8;
}
`;
```
## 📊 Integration Development
### External API Integration
**API Client**:
```python
# backend/services/external_api_client.py
import httpx
from typing import Dict, Any
class ExternalAPIClient:
def __init__(self, api_key: str, base_url: str):
self.api_key = api_key
self.base_url = base_url
self.client = httpx.AsyncClient()
async def get_data(self, endpoint: str) -> Dict[str, Any]:
"""Get data from external API."""
headers = {"Authorization": f"Bearer {self.api_key}"}
response = await self.client.get(
f"{self.base_url}/{endpoint}",
headers=headers
)
return response.json()
```
**Integration Service**:
```python
# backend/services/integration_service.py
class IntegrationService:
def __init__(self):
self.external_client = ExternalAPIClient(
api_key=settings.EXTERNAL_API_KEY,
base_url=settings.EXTERNAL_API_URL
)
async def sync_data(self) -> Dict[str, Any]:
"""Sync data with external service."""
external_data = await self.external_client.get_data("sync")
# Process and store data
return {"status": "synced", "data": external_data}
```
### Database Integration
**Custom Database Operations**:
```python
# backend/services/custom_db_service.py
from sqlalchemy.orm import Session
from backend.models.custom_models import CustomData
class CustomDBService:
def __init__(self, db: Session):
self.db = db
async def create_custom_data(self, data: dict) -> CustomData:
"""Create custom data record."""
custom_data = CustomData(**data)
self.db.add(custom_data)
self.db.commit()
return custom_data
async def get_custom_data(self, data_id: int) -> CustomData:
"""Get custom data by ID."""
return self.db.query(CustomData).filter(
CustomData.id == data_id
).first()
```
## 🎯 Advanced Customization
### Plugin Architecture
**Plugin Interface**:
```python
# backend/plugins/base_plugin.py
from abc import ABC, abstractmethod
from typing import Dict, Any
class BasePlugin(ABC):
@abstractmethod
def initialize(self, config: Dict[str, Any]) -> None:
"""Initialize plugin with configuration."""
pass
@abstractmethod
def execute(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Execute plugin logic."""
pass
@abstractmethod
def cleanup(self) -> None:
"""Cleanup plugin resources."""
pass
```
**Plugin Implementation**:
```python
# backend/plugins/custom_plugin.py
from backend.plugins.base_plugin import BasePlugin
class CustomPlugin(BasePlugin):
def initialize(self, config: Dict[str, Any]) -> None:
"""Initialize custom plugin."""
self.config = config
# Initialize plugin resources
def execute(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Execute custom plugin logic."""
# Process data according to plugin logic
return {"processed": data, "plugin": "custom"}
def cleanup(self) -> None:
"""Cleanup plugin resources."""
# Clean up resources
```
### Custom Workflows
**Workflow Engine**:
```python
# backend/services/workflow_engine.py
from typing import List, Dict, Any
class WorkflowStep:
def __init__(self, name: str, function: callable):
self.name = name
self.function = function
class WorkflowEngine:
def __init__(self):
self.steps: List[WorkflowStep] = []
def add_step(self, step: WorkflowStep):
"""Add workflow step."""
self.steps.append(step)
async def execute_workflow(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Execute workflow with data."""
result = data
for step in self.steps:
result = await step.function(result)
return result
```
## 🛠️ Configuration Management
### Environment Configuration
**Custom Environment Variables**:
```python
# backend/config/custom_config.py
from pydantic import BaseSettings
class CustomSettings(BaseSettings):
custom_api_key: str
custom_api_url: str
custom_feature_enabled: bool = False
custom_timeout: int = 30
class Config:
env_file = ".env"
```
**Feature Flags**:
```python
# backend/services/feature_flags.py
class FeatureFlags:
def __init__(self):
self.flags = {
"custom_feature": os.getenv("CUSTOM_FEATURE_ENABLED", "false").lower() == "true",
"advanced_analytics": os.getenv("ADVANCED_ANALYTICS_ENABLED", "false").lower() == "true",
}
def is_enabled(self, feature: str) -> bool:
"""Check if feature is enabled."""
return self.flags.get(feature, False)
```
### Frontend Configuration
**Runtime Configuration**:
```typescript
// frontend/src/config/runtime.ts
interface RuntimeConfig {
customApiUrl: string;
customFeatureEnabled: boolean;
customTimeout: number;
}
export const getRuntimeConfig = (): RuntimeConfig => ({
customApiUrl: process.env.REACT_APP_CUSTOM_API_URL || '/api/custom',
customFeatureEnabled: process.env.REACT_APP_CUSTOM_FEATURE_ENABLED === 'true',
customTimeout: parseInt(process.env.REACT_APP_CUSTOM_TIMEOUT || '30000'),
});
```
## 📈 Testing Customizations
### Backend Testing
**Custom Test Cases**:
```python
# tests/test_custom_features.py
import pytest
from fastapi.testclient import TestClient
def test_custom_endpoint(client: TestClient):
"""Test custom endpoint."""
response = client.get("/api/custom/my-feature")
assert response.status_code == 200
assert response.json()["message"] == "Custom feature response"
def test_custom_service():
"""Test custom service."""
service = CustomService()
result = await service.process_custom_data({"test": "data"})
assert result is not None
```
### Frontend Testing
**Custom Component Testing**:
```typescript
// src/components/Custom/__tests__/CustomComponent.test.tsx
import { render, screen, fireEvent } from '@testing-library/react';
import { CustomComponent } from '../CustomComponent';
test('renders custom component', () => {
const mockData = [{ name: 'Test Item 1' }, { name: 'Test Item 2' }];
const mockAction = jest.fn();
render(
<CustomComponent
title="Test Title"
data={mockData}
onAction={mockAction}
/>
);
expect(screen.getByText('Test Title')).toBeInTheDocument();
expect(screen.getByText('Test Item 1')).toBeInTheDocument();
});
```
## 🎯 Deployment Customizations
### Custom Docker Configuration
**Custom Dockerfile**:
```dockerfile
# Dockerfile.custom
FROM python:3.9-slim
# Install custom dependencies
RUN pip install custom-package
# Copy custom configuration
COPY custom_config.py /app/
COPY custom_plugins/ /app/plugins/
# Set custom environment
ENV CUSTOM_FEATURE_ENABLED=true
```
**Custom Docker Compose**:
```yaml
# docker-compose.custom.yml
services:
alwrity-custom:
build:
context: .
dockerfile: Dockerfile.custom
environment:
- CUSTOM_API_KEY=${CUSTOM_API_KEY}
- CUSTOM_FEATURE_ENABLED=true
volumes:
- ./custom_plugins:/app/plugins
```
## 🎯 Best Practices
### Customization Best Practices
**Code Organization**:
1. **Separation of Concerns**: Keep custom code separate from core code
2. **Modular Design**: Design customizations as modular components
3. **Documentation**: Document all customizations thoroughly
4. **Testing**: Test all customizations thoroughly
5. **Version Control**: Use proper version control for custom code
**Performance Considerations**:
- **Optimization**: Optimize custom code for performance
- **Caching**: Implement caching for custom features
- **Resource Management**: Manage resources efficiently
- **Monitoring**: Monitor custom feature performance
## 🎯 Next Steps
### Immediate Actions (This Week)
1. **Requirements Analysis**: Define customization requirements
2. **Architecture Planning**: Plan customization architecture
3. **Development Setup**: Set up development environment for customization
4. **Proof of Concept**: Create proof of concept for key customizations
### Short-Term Planning (This Month)
1. **Core Customizations**: Implement core customization features
2. **Testing**: Develop comprehensive tests for customizations
3. **Documentation**: Document customization process and usage
4. **Integration**: Integrate customizations with existing system
### Long-Term Strategy (Next Quarter)
1. **Advanced Features**: Implement advanced customization features
2. **Plugin System**: Develop comprehensive plugin system
3. **Community**: Share customizations with community
4. **Maintenance**: Establish maintenance and update procedures
---
*Ready to customize ALwrity? Start with [Codebase Exploration](codebase-exploration.md) to understand the architecture before implementing your customizations!*

View File

@@ -0,0 +1,303 @@
# Deployment Guide - Developers
This guide covers deploying ALwrity in various environments, from development to production, with best practices for scalability, security, and monitoring.
## 🎯 What You'll Accomplish
By the end of this guide, you'll have:
- ✅ Deployed ALwrity in your preferred environment
- ✅ Configured production-ready settings
- ✅ Implemented monitoring and logging
- ✅ Set up CI/CD pipelines for automated deployments
## ⏱️ Time Required: 2-3 hours
## 🚀 Deployment Options
### Self-Hosted Deployment
#### Docker Deployment
The easiest way to deploy ALwrity is using Docker:
**Quick Start**
```bash
# Clone the repository
git clone https://github.com/AJaySi/ALwrity.git
cd ALwrity
# Start with Docker Compose
docker-compose up -d
```
**What This Includes**
- **Backend API**: FastAPI application with all endpoints
- **Frontend**: React application with Material-UI
- **Database**: PostgreSQL for data storage
- **Redis**: For caching and session management
- **Nginx**: Reverse proxy and load balancer
#### Kubernetes Deployment
For production environments, use Kubernetes:
**Key Benefits**
- **High Availability**: Automatic failover and recovery
- **Scalability**: Auto-scaling based on demand
- **Load Balancing**: Distribute traffic across instances
- **Resource Management**: Efficient resource allocation
**Deployment Steps**
1. **Create Kubernetes Cluster** - Set up your K8s cluster
2. **Apply Configurations** - Deploy ALwrity using K8s manifests
3. **Configure Ingress** - Set up external access
4. **Monitor Deployment** - Track deployment status
### Cloud Deployment
#### AWS Deployment
Deploy ALwrity on Amazon Web Services:
**Recommended Architecture**
- **ECS/Fargate**: Container orchestration
- **RDS**: Managed PostgreSQL database
- **ElastiCache**: Redis for caching
- **Application Load Balancer**: Traffic distribution
- **CloudFront**: CDN for static assets
**Benefits**
- **Managed Services**: Reduce operational overhead
- **Auto-scaling**: Handle traffic spikes automatically
- **High Availability**: Multi-AZ deployment
- **Security**: AWS security best practices
#### Google Cloud Deployment
Deploy on Google Cloud Platform:
**Recommended Services**
- **Cloud Run**: Serverless container platform
- **Cloud SQL**: Managed PostgreSQL
- **Memorystore**: Managed Redis
- **Cloud Load Balancing**: Global load balancing
- **Cloud CDN**: Content delivery network
**Advantages**
- **Serverless**: Pay only for what you use
- **Global Scale**: Deploy across multiple regions
- **Integrated Services**: Seamless integration with GCP services
## 📊 Production Configuration
### Environment Variables
Configure your production environment:
**Essential Variables**
```bash
# Database
DATABASE_URL=postgresql://user:password@localhost:5432/alwrity
REDIS_URL=redis://localhost:6379
# API Keys
GEMINI_API_KEY=your_gemini_api_key
OPENAI_API_KEY=your_openai_api_key
# Security
SECRET_KEY=your_secret_key_here
JWT_SECRET_KEY=your_jwt_secret_key
# Monitoring
SENTRY_DSN=your_sentry_dsn
```
**Security Best Practices**
- **Use Environment Variables**: Never hardcode sensitive data
- **Rotate Keys Regularly**: Change API keys periodically
- **Use Secrets Management**: Store secrets securely
- **Enable Encryption**: Encrypt data at rest and in transit
### Database Configuration
Optimize your database for production:
**PostgreSQL Settings**
- **Connection Pooling**: Configure appropriate pool sizes
- **Backup Strategy**: Regular automated backups
- **Monitoring**: Track database performance
- **Indexing**: Optimize query performance
**Redis Configuration**
- **Memory Management**: Configure appropriate memory limits
- **Persistence**: Set up data persistence
- **Clustering**: Use Redis Cluster for high availability
- **Monitoring**: Track Redis performance
### Nginx Configuration
Set up reverse proxy and load balancing:
**Key Features**
- **SSL Termination**: Handle HTTPS encryption
- **Load Balancing**: Distribute traffic across backend instances
- **Rate Limiting**: Prevent abuse and attacks
- **Security Headers**: Add security headers to responses
**Performance Optimization**
- **Gzip Compression**: Compress responses
- **Static File Caching**: Cache static assets
- **Connection Pooling**: Reuse connections
- **Buffer Optimization**: Optimize buffer sizes
## 🚀 CI/CD Pipeline Setup
### GitHub Actions
Automate your deployment process:
**Pipeline Stages**
1. **Test**: Run automated tests
2. **Build**: Build Docker images
3. **Deploy**: Deploy to production
4. **Monitor**: Verify deployment success
**Key Features**
- **Automated Testing**: Run tests on every commit
- **Docker Builds**: Build and push container images
- **Environment Deployment**: Deploy to different environments
- **Rollback Capability**: Quick rollback on failures
### GitLab CI/CD
Alternative CI/CD solution:
**Pipeline Configuration**
- **Multi-stage Pipelines**: Separate build, test, and deploy stages
- **Docker Integration**: Build and push container images
- **Environment Management**: Deploy to different environments
- **Security Scanning**: Automated security checks
## 🚀 Monitoring and Logging
### Application Monitoring
Track your application performance:
**Key Metrics**
- **Response Times**: API endpoint performance
- **Error Rates**: Track application errors
- **Resource Usage**: CPU, memory, disk usage
- **User Activity**: Track user interactions
**Monitoring Tools**
- **Prometheus**: Metrics collection and storage
- **Grafana**: Visualization and dashboards
- **Sentry**: Error tracking and performance monitoring
- **DataDog**: Comprehensive monitoring platform
### Logging Configuration
Set up comprehensive logging:
**Log Levels**
- **DEBUG**: Detailed debugging information
- **INFO**: General application information
- **WARNING**: Warning messages
- **ERROR**: Error conditions
- **CRITICAL**: Critical errors
**Log Management**
- **Centralized Logging**: Aggregate logs from all services
- **Log Rotation**: Manage log file sizes
- **Log Analysis**: Search and analyze log data
- **Alerting**: Set up log-based alerts
### Health Checks
Monitor application health:
**Health Check Endpoints**
- **Basic Health**: Simple application status
- **Detailed Health**: Check all dependencies
- **Readiness Check**: Verify application is ready to serve traffic
- **Liveness Check**: Verify application is running
**Monitoring Integration**
- **Kubernetes Probes**: Use health checks for K8s probes
- **Load Balancer Health**: Health checks for load balancers
- **Monitoring Alerts**: Alert on health check failures
## 🎯 Security Best Practices
### Application Security
Secure your ALwrity deployment:
**Security Measures**
- **HTTPS Only**: Enforce HTTPS for all traffic
- **Security Headers**: Add security headers to responses
- **Input Validation**: Validate all user inputs
- **Authentication**: Implement proper authentication
**Access Control**
- **Role-based Access**: Implement RBAC
- **API Rate Limiting**: Prevent abuse
- **IP Whitelisting**: Restrict access by IP
- **Audit Logging**: Log all access attempts
### Infrastructure Security
Secure your infrastructure:
**Network Security**
- **Firewall Rules**: Configure appropriate firewall rules
- **VPC Configuration**: Use private networks
- **SSL/TLS**: Encrypt all communications
- **DDoS Protection**: Implement DDoS protection
**Data Security**
- **Encryption at Rest**: Encrypt stored data
- **Encryption in Transit**: Encrypt data in transit
- **Backup Encryption**: Encrypt backup data
- **Key Management**: Secure key storage and rotation
## 🆘 Troubleshooting
### Common Deployment Issues
Address common deployment problems:
**Database Issues**
- **Connection Problems**: Check database connectivity
- **Performance Issues**: Optimize database queries
- **Backup Failures**: Verify backup procedures
- **Migration Errors**: Handle database migrations
**Application Issues**
- **Startup Failures**: Check application configuration
- **Memory Issues**: Monitor memory usage
- **Performance Problems**: Identify bottlenecks
- **Error Handling**: Implement proper error handling
### Performance Optimization
Optimize your deployment:
**Application Optimization**
- **Caching**: Implement appropriate caching strategies
- **Database Optimization**: Optimize database performance
- **CDN Usage**: Use CDN for static assets
- **Load Balancing**: Distribute traffic effectively
**Infrastructure Optimization**
- **Resource Allocation**: Right-size your infrastructure
- **Auto-scaling**: Implement auto-scaling policies
- **Monitoring**: Track performance metrics
- **Capacity Planning**: Plan for future growth
## 🎯 Next Steps
### Immediate Actions (This Week)
1. **Choose deployment strategy** (Docker, Kubernetes, Cloud)
2. **Set up CI/CD pipeline** for automated deployments
3. **Configure monitoring and logging** for production
4. **Implement security best practices** and SSL certificates
### This Month
1. **Deploy to production** with proper monitoring
2. **Set up backup and disaster recovery** procedures
3. **Implement performance optimization** and caching
4. **Create runbooks** for common operational tasks
## 🚀 Ready for More?
**[Learn about performance optimization →](performance-optimization.md)**
---
*Questions? [Join our community](https://github.com/AJaySi/ALwrity/discussions) or [contact support](mailto:support@alwrity.com)!*

View File

@@ -0,0 +1,254 @@
# Integration Guide - Developers
This guide will help you integrate ALwrity into your existing applications and workflows using our comprehensive API.
## 🎯 What You'll Accomplish
By the end of this guide, you'll have:
- ✅ Connected ALwrity to your application
- ✅ Set up basic content generation workflows
- ✅ Implemented webhooks for real-time updates
- ✅ Created custom integrations with your tools
## ⏱️ Time Required: 1-2 hours
## 🚀 Step-by-Step Integration
### Step 1: API Authentication Setup (15 minutes)
#### Get Your API Key
1. **Access ALwrity Dashboard** - Log into your ALwrity instance
2. **Navigate to API Settings** - Go to Settings → API Keys
3. **Generate API Key** - Create a new API key for your application
4. **Test Connection** - Verify your API key works
#### Basic Authentication
```bash
# Test your API connection
curl -H "Authorization: Bearer YOUR_API_KEY" \
https://your-alwrity-instance.com/api/health
```
#### Rate Limiting
- **Standard Limit**: 100 requests per hour
- **Burst Limit**: 20 requests per minute
- **Best Practice**: Implement retry logic with exponential backoff
### Step 2: Core API Integration (30 minutes)
#### Content Generation API
ALwrity provides several content generation endpoints:
**Blog Content Generation**
```python
# Generate a blog post
response = requests.post('https://your-instance.com/api/blog-writer',
headers={'Authorization': 'Bearer YOUR_API_KEY'},
json={
'topic': 'AI in Marketing',
'keywords': ['AI', 'marketing', 'automation'],
'target_audience': 'marketing professionals',
'length': 'long_form'
}
)
```
**Social Media Content**
```python
# Generate LinkedIn post
response = requests.post('https://your-instance.com/api/linkedin-writer',
headers={'Authorization': 'Bearer YOUR_API_KEY'},
json={
'topic': 'Content Strategy Tips',
'hashtags': ['#ContentStrategy', '#Marketing'],
'tone': 'professional'
}
)
```
#### SEO Analysis API
```python
# Analyze content for SEO
response = requests.post('https://your-instance.com/api/seo-analyzer',
headers={'Authorization': 'Bearer YOUR_API_KEY'},
json={
'content': 'Your content here...',
'target_keywords': ['keyword1', 'keyword2']
}
)
```
### Step 3: Webhook Integration (20 minutes)
#### Set Up Webhooks
Webhooks allow ALwrity to notify your application when content generation is complete.
**Webhook Configuration**
1. **Create Webhook Endpoint** - Set up an endpoint in your application
2. **Register Webhook** - Add your webhook URL in ALwrity settings
3. **Verify Signature** - Always verify webhook signatures for security
**Example Webhook Handler**
```python
@app.route('/webhook/alwrity', methods=['POST'])
def handle_webhook():
# Verify webhook signature
signature = request.headers.get('X-ALWRITY-Signature')
if not verify_signature(request.data, signature):
return 'Unauthorized', 401
data = request.json
if data['event_type'] == 'content_generated':
# Handle content generation completion
process_generated_content(data['content'])
return 'OK', 200
```
#### Available Webhook Events
- **content_generated**: Content generation completed
- **seo_analysis_complete**: SEO analysis finished
- **research_complete**: Research phase completed
- **user_action**: User interactions with your integration
### Step 4: Custom Workflow Integration (25 minutes)
#### Content Pipeline Integration
Create automated workflows that combine multiple ALwrity features:
**Basic Content Pipeline**
1. **Research Phase** - Gather insights about the topic
2. **Outline Generation** - Create content structure
3. **Content Creation** - Generate the actual content
4. **SEO Optimization** - Analyze and improve SEO
**Example Workflow**
```python
def create_content_pipeline(topic, keywords):
# Step 1: Research
research = alwrity_client.research(topic, keywords)
# Step 2: Generate outline
outline = alwrity_client.generate_outline(topic, research)
# Step 3: Create content
content = alwrity_client.generate_blog_content(topic, outline)
# Step 4: SEO analysis
seo_analysis = alwrity_client.analyze_seo(content, keywords)
return {
'content': content,
'seo_score': seo_analysis['score'],
'suggestions': seo_analysis['suggestions']
}
```
## 📊 Platform-Specific Integrations
### WordPress Integration
**Plugin Development**
- Use ALwrity API to generate content for WordPress posts
- Integrate with WordPress editor for seamless content creation
- Add custom meta fields for SEO optimization
**Key Features**
- One-click content generation
- SEO optimization suggestions
- Content templates and variations
### Shopify Integration
**App Development**
- Generate product descriptions automatically
- Create marketing content for product pages
- Optimize content for e-commerce SEO
**Use Cases**
- Product description generation
- Marketing email content
- Social media posts for products
### Slack Integration
**Bot Development**
- Generate content directly in Slack channels
- Share content creation tasks with team members
- Get content suggestions and ideas
**Commands**
- `/alwrity blog [topic]` - Generate blog content
- `/alwrity social [platform] [topic]` - Create social media content
- `/alwrity seo [content]` - Analyze SEO
## 🎯 Best Practices
### Error Handling
- **Always implement retry logic** for API calls
- **Handle rate limiting** gracefully
- **Validate API responses** before processing
- **Log errors** for debugging and monitoring
### Performance Optimization
- **Cache frequently used data** to reduce API calls
- **Use batch processing** for multiple content requests
- **Implement async processing** for better performance
- **Monitor API usage** to stay within limits
### Security
- **Never expose API keys** in client-side code
- **Use environment variables** for sensitive data
- **Verify webhook signatures** for security
- **Implement proper authentication** for your endpoints
## 🚀 Common Use Cases
### Content Management Systems
- **Automated blog posting** with ALwrity-generated content
- **SEO optimization** for existing content
- **Content scheduling** and publishing workflows
### Marketing Automation
- **Email campaign content** generation
- **Social media posting** automation
- **Landing page content** creation
### E-commerce Platforms
- **Product description** generation
- **Marketing content** for product launches
- **SEO optimization** for product pages
## 🆘 Troubleshooting
### Common Issues
- **API Key Invalid**: Verify your API key is correct and active
- **Rate Limit Exceeded**: Implement proper rate limiting and retry logic
- **Webhook Not Working**: Check webhook URL and signature verification
- **Content Quality Issues**: Adjust parameters like tone, length, and target audience
### Getting Help
- **Check API Documentation** for detailed endpoint information
- **Review Error Messages** for specific issue details
- **Contact Support** for technical assistance
- **Join Community** for peer support and best practices
## 🎯 Next Steps
### Immediate Actions (This Week)
1. **Set up API authentication** and test connectivity
2. **Implement basic content generation** in your application
3. **Set up webhook endpoints** for real-time updates
4. **Test your integration** with sample data
### This Month
1. **Build custom workflows** using ALwrity APIs
2. **Implement error handling** and monitoring
3. **Create platform-specific integrations** for your use case
4. **Optimize performance** and add caching
## 🚀 Ready for More?
**[Learn about advanced usage →](advanced-usage.md)**
---
*Questions? [Join our community](https://github.com/AJaySi/ALwrity/discussions) or [contact support](mailto:support@alwrity.com)!*

View File

@@ -0,0 +1,181 @@
# Developers Journey
Welcome to ALwrity! This journey is designed specifically for software developers, technical writers, and dev teams who want to self-host, customize, and extend ALwrity's open-source AI content creation platform.
## 🎯 Your Journey Overview
```mermaid
journey
title Developer Journey
section Evaluation
Technical Review: 4: Developer
API Assessment: 5: Developer
Integration Planning: 4: Developer
section Implementation
API Setup: 5: Developer
Custom Integration: 4: Developer
Testing: 5: Developer
section Optimization
Performance Tuning: 5: Developer
Advanced Features: 4: Developer
Monitoring: 5: Developer
section Scaling
Production Deployment: 4: Developer
Team Collaboration: 5: Developer
Contributing: 5: Developer
```
## 🚀 What You'll Achieve
### Immediate Benefits (Week 1)
- **Self-host ALwrity** on your own infrastructure
- **Customize the platform** to your specific needs
- **Extend functionality** with custom features
- **Access full source code** and documentation
### Short-term Goals (Month 1)
- **Deploy ALwrity in production** with proper monitoring
- **Customize the UI/UX** to match your brand
- **Extend the API** with custom endpoints
- **Build integrations** with your existing tools
### Long-term Success (3+ Months)
- **Scale content operations** across multiple applications
- **Contribute to ALwrity's open source** components
- **Build and share integrations** with the developer community
- **Establish thought leadership** in AI-powered content development
## 💻 Perfect For You If...
**You're a software developer** who wants to self-host AI content tools
**You're a technical writer** who wants to customize documentation workflows
**You're a dev team lead** who needs to deploy content solutions
**You're building content management systems** or CMS platforms
**You want full control** over your content creation platform
**You want to contribute** to open source AI tools
## 🛠️ What Makes This Journey Special
### Self-Hosted Architecture
- **FastAPI backend** with comprehensive REST APIs
- **React frontend** with TypeScript and Material-UI
- **SQLite/PostgreSQL** database with full control
- **Docker support** for easy deployment
### Developer-Friendly Features
- **Full source code access** on GitHub
- **Comprehensive documentation** and setup guides
- **Modular architecture** for easy customization
- **Open source license** for commercial use
### Advanced Capabilities
- **Custom AI integrations** with multiple providers
- **Subscription system** with usage tracking
- **SEO tools** with Google Search Console integration
- **Multi-platform content** generation (Blog, LinkedIn, Facebook)
## 📋 Your Journey Steps
### Step 1: Self-Host Setup (2 hours)
**[Get Started →](self-host-setup.md)**
- Clone the ALwrity repository
- Set up the development environment
- Configure API keys and environment variables
- Start the backend and frontend servers
### Step 2: Explore the Codebase (4 hours)
**[Codebase Exploration →](codebase-exploration.md)**
- Understand the FastAPI backend structure
- Explore the React frontend components
- Review the database models and APIs
- Test the core functionality
### Step 3: Customization (1 day)
**[Customization Guide →](customization.md)**
- Customize the UI/UX to match your brand
- Add custom AI providers or models
- Extend the API with new endpoints
- Modify the content generation logic
### Step 4: Production Deployment (1 day)
**[Production Deployment →](deployment.md)**
- Deploy to your preferred cloud platform
- Set up monitoring and logging
- Configure SSL and security
- Set up automated backups
### Step 5: Contributing (Ongoing)
**[Contributing Guide →](contributing.md)**
- Contribute to the open source project
- Share your customizations and integrations
- Help improve documentation
- Participate in the community
## 🎯 Success Stories
### Alex - Full-Stack Developer
*"I integrated ALwrity into our CMS and reduced content creation time by 80%. The API is well-designed and the documentation is excellent."*
### Maria - Technical Writer
*"ALwrity's API helps me automate documentation generation for our software products. It's a game-changer for technical writing."*
### David - Dev Team Lead
*"Our team uses ALwrity to generate content for multiple client projects. The API integration is seamless and reliable."*
## 🚀 Ready to Start?
### Quick Start (5 minutes)
1. **[Sign up for Developer Account](https://alwrity.com/developers)**
2. **[Get your API keys](api-quickstart.md)**
3. **[Make your first API call](api-quickstart.md)**
### Need Help?
- **[API Documentation](https://docs.alwrity.com/api)** - Complete API reference
- **[Code Examples](https://github.com/alwrity/examples)** - Sample integrations
- **[Developer Community](https://github.com/AJaySi/ALwrity/discussions)** - Get help from other developers
## 📚 What's Next?
Once you've completed your first integration, explore these next steps:
- **[Advanced API Features](advanced-usage.md)** - Use advanced capabilities
- **[Production Deployment](deployment.md)** - Deploy to production
- **[Team Collaboration](team-collaboration.md)** - Work with your team
- **[Contributing](contributing.md)** - Contribute to ALwrity
## 🔧 Technical Requirements
### Prerequisites
- **Programming experience** in any language
- **Understanding of REST APIs** and HTTP
- **Basic knowledge** of JSON and web technologies
- **Development environment** set up
### Supported Technologies
- **Programming Languages**: Python, JavaScript, PHP, Ruby, Go, Java, C#
- **Frameworks**: React, Vue, Angular, Django, Flask, Express, Laravel
- **Databases**: PostgreSQL, MySQL, MongoDB, Redis
- **Cloud Platforms**: AWS, Google Cloud, Azure, Heroku
## 🎯 Success Metrics
### Technical Metrics
- **API Integration Success**: 90%+ success rate
- **Documentation Completeness**: 95%+ coverage
- **Developer Satisfaction**: 4.7+ stars
- **Community Contributions**: 20+ contributors
### Business Metrics
- **Content Generation Speed**: 80%+ faster
- **Development Time Savings**: 60%+ reduction
- **Integration Reliability**: 99.9%+ uptime
- **Team Productivity**: 3x increase
---
*Ready to build amazing integrations? [Start your developer journey →](api-quickstart.md)*

View File

@@ -0,0 +1,292 @@
# Performance Optimization - Developers
This guide covers optimizing ALwrity performance for production environments, including caching, database optimization, and scaling strategies.
## 🎯 What You'll Accomplish
By the end of this guide, you'll have:
- ✅ Optimized ALwrity performance for production
- ✅ Implemented caching strategies
- ✅ Configured database optimization
- ✅ Set up monitoring and alerting
## ⏱️ Time Required: 2-3 hours
## 🚀 Performance Optimization Strategies
### Caching Implementation
#### Redis Caching
Implement Redis for fast data access:
**Cache Types**
- **API Response Caching**: Cache frequently requested API responses
- **Content Caching**: Store generated content for reuse
- **Session Caching**: Cache user sessions and preferences
- **Database Query Caching**: Cache expensive database queries
**Implementation Benefits**
- **Faster Response Times**: Reduce API response times by 80-90%
- **Reduced Database Load**: Decrease database queries significantly
- **Better User Experience**: Faster content loading
- **Cost Savings**: Reduce server resource usage
#### CDN Integration
Use Content Delivery Networks for global performance:
**CDN Benefits**
- **Global Distribution**: Serve content from locations closest to users
- **Static Asset Caching**: Cache images, CSS, and JavaScript files
- **Bandwidth Optimization**: Reduce server bandwidth usage
- **DDoS Protection**: Built-in protection against attacks
**Implementation**
- **CloudFront (AWS)**: Global CDN with edge locations
- **CloudFlare**: Comprehensive CDN and security platform
- **Google Cloud CDN**: High-performance content delivery
### Database Optimization
#### PostgreSQL Performance
Optimize your PostgreSQL database:
**Query Optimization**
- **Index Creation**: Create appropriate indexes for frequently queried columns
- **Query Analysis**: Use EXPLAIN ANALYZE to identify slow queries
- **Connection Pooling**: Implement connection pooling to manage database connections
- **Query Caching**: Cache frequently executed queries
**Database Configuration**
- **Memory Settings**: Optimize shared_buffers and work_mem
- **Checkpoint Settings**: Configure checkpoint frequency and timing
- **Logging Configuration**: Set up appropriate logging levels
- **Maintenance Tasks**: Schedule regular VACUUM and ANALYZE operations
#### Redis Optimization
Optimize Redis for caching:
**Memory Management**
- **Memory Limits**: Set appropriate memory limits
- **Eviction Policies**: Configure LRU or LFU eviction policies
- **Data Persistence**: Choose between RDB and AOF persistence
- **Memory Optimization**: Use appropriate data types and structures
**Performance Tuning**
- **Connection Pooling**: Implement connection pooling
- **Pipeline Operations**: Use pipelining for multiple operations
- **Cluster Configuration**: Set up Redis Cluster for high availability
- **Monitoring**: Track Redis performance metrics
### Application Performance
#### API Optimization
Optimize your API endpoints:
**Response Optimization**
- **Response Compression**: Enable gzip compression
- **Pagination**: Implement pagination for large datasets
- **Field Selection**: Allow clients to select specific fields
- **Response Caching**: Cache API responses appropriately
**Request Optimization**
- **Batch Processing**: Process multiple requests together
- **Async Processing**: Use asynchronous processing for long-running tasks
- **Rate Limiting**: Implement appropriate rate limiting
- **Request Validation**: Validate requests early to avoid unnecessary processing
#### Frontend Optimization
Optimize your React frontend:
**Bundle Optimization**
- **Code Splitting**: Split code into smaller chunks
- **Tree Shaking**: Remove unused code from bundles
- **Lazy Loading**: Load components only when needed
- **Bundle Analysis**: Analyze bundle sizes and optimize
**Performance Features**
- **Virtual Scrolling**: Implement virtual scrolling for large lists
- **Memoization**: Use React.memo and useMemo for expensive operations
- **Image Optimization**: Optimize images and use appropriate formats
- **Service Workers**: Implement service workers for offline functionality
## 📊 Monitoring and Analytics
### Performance Monitoring
Track application performance:
**Key Metrics**
- **Response Times**: Monitor API response times
- **Throughput**: Track requests per second
- **Error Rates**: Monitor error rates and types
- **Resource Usage**: Track CPU, memory, and disk usage
**Monitoring Tools**
- **Prometheus**: Metrics collection and storage
- **Grafana**: Visualization and dashboards
- **New Relic**: Application performance monitoring
- **DataDog**: Comprehensive monitoring platform
### Real-time Monitoring
Set up real-time performance monitoring:
**Alerting**
- **Performance Alerts**: Alert on slow response times
- **Error Alerts**: Alert on high error rates
- **Resource Alerts**: Alert on high resource usage
- **Capacity Alerts**: Alert on approaching capacity limits
**Dashboards**
- **Real-time Metrics**: Live performance dashboards
- **Historical Data**: Performance trends over time
- **Custom Metrics**: Business-specific performance metrics
- **Comparative Analysis**: Compare performance across time periods
## 🚀 Scaling Strategies
### Horizontal Scaling
Scale your application horizontally:
**Load Balancing**
- **Application Load Balancer**: Distribute traffic across multiple instances
- **Health Checks**: Monitor instance health and remove unhealthy instances
- **Session Affinity**: Handle session state in distributed environments
- **Auto-scaling**: Automatically scale based on demand
**Microservices Architecture**
- **Service Decomposition**: Break down monolithic applications
- **API Gateway**: Centralize API management and routing
- **Service Discovery**: Automatically discover and register services
- **Circuit Breakers**: Implement fault tolerance patterns
### Vertical Scaling
Scale your application vertically:
**Resource Optimization**
- **CPU Optimization**: Optimize CPU usage and allocation
- **Memory Optimization**: Optimize memory usage and allocation
- **Storage Optimization**: Optimize storage performance and capacity
- **Network Optimization**: Optimize network performance and bandwidth
**Hardware Upgrades**
- **Server Upgrades**: Upgrade server hardware for better performance
- **Storage Upgrades**: Use faster storage solutions (SSD, NVMe)
- **Network Upgrades**: Upgrade network infrastructure
- **Database Upgrades**: Upgrade database hardware and configuration
## 🎯 Performance Testing
### Load Testing
Test your application under load:
**Testing Tools**
- **JMeter**: Apache JMeter for load testing
- **Artillery**: Modern load testing toolkit
- **K6**: Developer-centric load testing tool
- **Locust**: Python-based load testing framework
**Testing Scenarios**
- **Normal Load**: Test under expected normal load
- **Peak Load**: Test under peak traffic conditions
- **Stress Testing**: Test beyond normal capacity
- **Spike Testing**: Test sudden traffic spikes
### Performance Benchmarking
Establish performance benchmarks:
**Benchmark Metrics**
- **Response Time**: Target response times for different endpoints
- **Throughput**: Expected requests per second
- **Resource Usage**: Target resource utilization levels
- **Error Rates**: Acceptable error rate thresholds
**Continuous Monitoring**
- **Performance Regression**: Detect performance regressions
- **Trend Analysis**: Analyze performance trends over time
- **Capacity Planning**: Plan for future capacity needs
- **Optimization Opportunities**: Identify optimization opportunities
## 🆘 Performance Troubleshooting
### Common Performance Issues
Address common performance problems:
**Database Issues**
- **Slow Queries**: Identify and optimize slow database queries
- **Connection Pool Exhaustion**: Manage database connections effectively
- **Lock Contention**: Resolve database lock contention issues
- **Index Problems**: Optimize database indexes
**Application Issues**
- **Memory Leaks**: Identify and fix memory leaks
- **CPU Bottlenecks**: Optimize CPU-intensive operations
- **I/O Bottlenecks**: Optimize disk and network I/O
- **Cache Misses**: Optimize caching strategies
### Performance Debugging
Debug performance issues:
**Profiling Tools**
- **Application Profilers**: Profile application performance
- **Database Profilers**: Profile database performance
- **Memory Profilers**: Profile memory usage
- **Network Profilers**: Profile network performance
**Debugging Techniques**
- **Performance Logging**: Add performance logging to identify bottlenecks
- **A/B Testing**: Test performance optimizations
- **Gradual Rollout**: Gradually roll out performance improvements
- **Monitoring**: Continuously monitor performance after changes
## 🎯 Best Practices
### Development Best Practices
Follow performance best practices during development:
**Code Optimization**
- **Efficient Algorithms**: Use efficient algorithms and data structures
- **Resource Management**: Properly manage resources (memory, connections)
- **Async Programming**: Use asynchronous programming where appropriate
- **Error Handling**: Implement proper error handling
**Testing Best Practices**
- **Performance Testing**: Include performance testing in your test suite
- **Load Testing**: Regularly perform load testing
- **Monitoring**: Set up monitoring from the beginning
- **Documentation**: Document performance requirements and optimizations
### Production Best Practices
Follow best practices for production environments:
**Deployment Best Practices**
- **Gradual Rollout**: Gradually roll out changes to production
- **Rollback Plans**: Have rollback plans for performance issues
- **Monitoring**: Continuously monitor performance in production
- **Alerting**: Set up appropriate alerts for performance issues
**Maintenance Best Practices**
- **Regular Optimization**: Regularly review and optimize performance
- **Capacity Planning**: Plan for future capacity needs
- **Performance Reviews**: Conduct regular performance reviews
- **Continuous Improvement**: Continuously improve performance
## 🎯 Next Steps
### Immediate Actions (This Week)
1. **Implement caching strategies** for your application
2. **Optimize database performance** with proper indexing and configuration
3. **Set up performance monitoring** and alerting
4. **Conduct performance testing** to establish benchmarks
### This Month
1. **Implement scaling strategies** for horizontal and vertical scaling
2. **Optimize application performance** with code and configuration improvements
3. **Set up comprehensive monitoring** and analytics
4. **Create performance runbooks** for common issues
## 🚀 Ready for More?
**[Learn about contributing →](contributing.md)**
---
*Questions? [Join our community](https://github.com/AJaySi/ALwrity/discussions) or [contact support](mailto:support@alwrity.com)!*

View File

@@ -0,0 +1,677 @@
# Scaling for Developers
## 🎯 Overview
This guide helps developers scale ALwrity applications and infrastructure effectively. You'll learn how to handle increased load, optimize performance, implement caching strategies, and build scalable architectures.
## 🚀 What You'll Achieve
### Technical Scaling
- **Application Scaling**: Scale applications to handle increased load
- **Database Scaling**: Scale databases for performance and reliability
- **Infrastructure Scaling**: Scale infrastructure components effectively
- **Performance Optimization**: Optimize performance for scale
### Operational Scaling
- **Deployment Scaling**: Scale deployment processes and automation
- **Monitoring Scaling**: Scale monitoring and observability systems
- **Team Scaling**: Scale development team and processes
- **Cost Optimization**: Optimize costs while scaling operations
## 📋 Scaling Strategy Framework
### Scaling Dimensions
**Horizontal Scaling**:
1. **Load Balancing**: Distribute load across multiple servers
2. **Microservices**: Break applications into microservices
3. **Database Sharding**: Shard databases for better performance
4. **CDN Implementation**: Implement content delivery networks
**Vertical Scaling**:
- **Resource Enhancement**: Increase CPU, memory, and storage
- **Performance Tuning**: Optimize application performance
- **Database Optimization**: Optimize database performance
- **Caching Implementation**: Implement effective caching strategies
### Scaling Planning
**Capacity Planning**:
- **Load Analysis**: Analyze current and projected loads
- **Resource Requirements**: Plan resource requirements for scaling
- **Performance Targets**: Define performance targets and metrics
- **Cost Planning**: Plan scaling costs and budgets
**Risk Assessment**:
- **Performance Risks**: Assess performance risks during scaling
- **Reliability Risks**: Evaluate reliability and availability risks
- **Cost Risks**: Assess cost implications of scaling
- **Technical Risks**: Identify technical challenges and solutions
## 🛠️ Application Scaling
### Backend Scaling
**API Scaling**:
```python
# backend/middleware/rate_limiting.py
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
limiter = Limiter(key_func=get_remote_address)
@app.middleware("http")
async def rate_limit_middleware(request: Request, call_next):
# Rate limiting implementation
return await call_next(request)
@app.get("/api/content/generate")
@limiter.limit("10/minute")
async def generate_content(request: Request):
"""Generate content with rate limiting."""
# Content generation logic
```
**Database Scaling**:
```python
# backend/database/connection_pool.py
from sqlalchemy.pool import QueuePool
from sqlalchemy import create_engine
# Connection pooling for scalability
engine = create_engine(
DATABASE_URL,
poolclass=QueuePool,
pool_size=20,
max_overflow=30,
pool_pre_ping=True,
pool_recycle=3600
)
```
### Frontend Scaling
**Component Optimization**:
```typescript
// frontend/src/components/OptimizedComponent.tsx
import React, { memo, lazy, Suspense } from 'react';
// Lazy loading for better performance
const HeavyComponent = lazy(() => import('./HeavyComponent'));
// Memoized component for performance
const OptimizedComponent = memo(({ data }: { data: any[] }) => {
return (
<div>
<Suspense fallback={<div>Loading...</div>}>
<HeavyComponent data={data} />
</Suspense>
</div>
);
});
export default OptimizedComponent;
```
**Bundle Optimization**:
```javascript
// webpack.config.js
module.exports = {
optimization: {
splitChunks: {
chunks: 'all',
cacheGroups: {
vendor: {
test: /[\\/]node_modules[\\/]/,
name: 'vendors',
chunks: 'all',
},
common: {
name: 'common',
minChunks: 2,
chunks: 'all',
},
},
},
},
};
```
## 📊 Performance Optimization
### Caching Strategies
**Redis Caching**:
```python
# backend/services/cache_service.py
import redis
import json
from typing import Optional, Any
class CacheService:
def __init__(self):
self.redis_client = redis.Redis(
host='localhost',
port=6379,
db=0,
decode_responses=True
)
async def get(self, key: str) -> Optional[Any]:
"""Get value from cache."""
value = self.redis_client.get(key)
return json.loads(value) if value else None
async def set(self, key: str, value: Any, expire: int = 3600):
"""Set value in cache with expiration."""
self.redis_client.setex(
key,
expire,
json.dumps(value, default=str)
)
async def invalidate(self, pattern: str):
"""Invalidate cache keys matching pattern."""
keys = self.redis_client.keys(pattern)
if keys:
self.redis_client.delete(*keys)
```
**Application-Level Caching**:
```python
# backend/middleware/caching_middleware.py
from functools import wraps
import hashlib
def cache_response(expire_seconds: int = 300):
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
# Generate cache key
cache_key = f"{func.__name__}:{hashlib.md5(str(kwargs).encode()).hexdigest()}"
# Check cache
cached_result = await cache_service.get(cache_key)
if cached_result:
return cached_result
# Execute function and cache result
result = await func(*args, **kwargs)
await cache_service.set(cache_key, result, expire_seconds)
return result
return wrapper
return decorator
```
### Database Optimization
**Query Optimization**:
```python
# backend/services/optimized_queries.py
from sqlalchemy.orm import joinedload, selectinload
from sqlalchemy import func, desc
class OptimizedQueryService:
async def get_content_with_relations(self, content_id: int):
"""Optimized query with eager loading."""
return await self.db.query(Content)\
.options(
joinedload(Content.author),
selectinload(Content.tags),
joinedload(Content.seo_analysis)
)\
.filter(Content.id == content_id)\
.first()
async def get_content_analytics(self, limit: int = 100):
"""Optimized analytics query."""
return await self.db.query(
func.date(Content.created_at).label('date'),
func.count(Content.id).label('content_count'),
func.avg(Content.quality_score).label('avg_quality')
)\
.group_by(func.date(Content.created_at))\
.order_by(desc('date'))\
.limit(limit)\
.all()
```
**Database Indexing**:
```sql
-- backend/database/migrations/add_indexes.sql
-- Performance indexes for scaling
CREATE INDEX CONCURRENTLY idx_content_created_at ON content(created_at);
CREATE INDEX CONCURRENTLY idx_content_author_id ON content(author_id);
CREATE INDEX CONCURRENTLY idx_content_status ON content(status);
CREATE INDEX CONCURRENTLY idx_seo_analysis_url ON seo_analysis(url);
-- Composite indexes for complex queries
CREATE INDEX CONCURRENTLY idx_content_author_status
ON content(author_id, status, created_at);
```
## 🎯 Infrastructure Scaling
### Container Scaling
**Docker Scaling**:
```yaml
# docker-compose.scale.yml
version: '3.8'
services:
backend:
image: alwrity/backend:latest
deploy:
replicas: 3
resources:
limits:
cpus: '2'
memory: 4G
reservations:
cpus: '1'
memory: 2G
restart_policy:
condition: on-failure
delay: 5s
max_attempts: 3
environment:
- DATABASE_POOL_SIZE=20
- REDIS_URL=redis://redis:6379/0
depends_on:
- db
- redis
frontend:
image: alwrity/frontend:latest
deploy:
replicas: 2
resources:
limits:
cpus: '1'
memory: 2G
environment:
- REACT_APP_API_URL=http://backend:8000
```
**Kubernetes Scaling**:
```yaml
# k8s/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: alwrity-backend
spec:
replicas: 5
selector:
matchLabels:
app: alwrity-backend
template:
metadata:
labels:
app: alwrity-backend
spec:
containers:
- name: backend
image: alwrity/backend:latest
resources:
requests:
memory: "2Gi"
cpu: "1000m"
limits:
memory: "4Gi"
cpu: "2000m"
env:
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: alwrity-secrets
key: database-url
---
apiVersion: v1
kind: Service
metadata:
name: alwrity-backend-service
spec:
selector:
app: alwrity-backend
ports:
- port: 8000
targetPort: 8000
type: LoadBalancer
```
### Load Balancing
**Nginx Configuration**:
```nginx
# nginx.conf
upstream backend {
least_conn;
server backend1:8000 weight=3;
server backend2:8000 weight=3;
server backend3:8000 weight=2;
}
upstream frontend {
least_conn;
server frontend1:3000;
server frontend2:3000;
}
server {
listen 80;
server_name alwrity.com;
location /api/ {
proxy_pass http://backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_connect_timeout 30s;
proxy_send_timeout 30s;
proxy_read_timeout 30s;
}
location / {
proxy_pass http://frontend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
}
```
## 📈 Monitoring and Observability
### Application Monitoring
**Metrics Collection**:
```python
# backend/monitoring/metrics.py
from prometheus_client import Counter, Histogram, Gauge, generate_latest
import time
# Application metrics
request_count = Counter('http_requests_total', 'Total HTTP requests', ['method', 'endpoint'])
request_duration = Histogram('http_request_duration_seconds', 'HTTP request duration')
active_connections = Gauge('active_connections', 'Number of active connections')
content_generation_time = Histogram('content_generation_seconds', 'Content generation time')
@app.middleware("http")
async def metrics_middleware(request: Request, call_next):
start_time = time.time()
# Increment request counter
request_count.labels(
method=request.method,
endpoint=request.url.path
).inc()
response = await call_next(request)
# Record request duration
duration = time.time() - start_time
request_duration.observe(duration)
return response
@app.get("/metrics")
async def metrics():
"""Prometheus metrics endpoint."""
return Response(generate_latest(), media_type="text/plain")
```
**Health Checks**:
```python
# backend/health/health_checks.py
from fastapi import Depends
from sqlalchemy.orm import Session
import redis
async def database_health_check(db: Session = Depends(get_db)) -> bool:
"""Check database connectivity."""
try:
db.execute("SELECT 1")
return True
except Exception:
return False
async def redis_health_check() -> bool:
"""Check Redis connectivity."""
try:
redis_client = redis.Redis(host='redis', port=6379)
redis_client.ping()
return True
except Exception:
return False
@app.get("/health")
async def health_check():
"""Comprehensive health check."""
db_healthy = await database_health_check()
redis_healthy = await redis_health_check()
status = "healthy" if db_healthy and redis_healthy else "unhealthy"
return {
"status": status,
"database": "healthy" if db_healthy else "unhealthy",
"redis": "healthy" if redis_healthy else "unhealthy",
"timestamp": datetime.utcnow().isoformat()
}
```
### Performance Monitoring
**APM Integration**:
```python
# backend/monitoring/apm.py
from elasticapm.contrib.fastapi import ElasticAPM
from elasticapm.handlers.logging import LoggingHandler
# Elastic APM configuration
apm = ElasticAPM(
app,
service_name="alwrity-backend",
service_version="1.0.0",
environment="production",
server_url="http://apm-server:8200",
secret_token="your-secret-token"
)
# Custom performance tracking
@apm.capture_span("content_generation")
async def generate_content(request: ContentRequest):
"""Generate content with APM tracking."""
# Content generation logic
pass
```
## 🛠️ Scaling Best Practices
### Code Optimization
**Performance Best Practices**:
1. **Async/Await**: Use async/await for I/O operations
2. **Connection Pooling**: Implement database connection pooling
3. **Caching**: Implement multi-level caching strategies
4. **Lazy Loading**: Use lazy loading for large datasets
5. **Batch Processing**: Process data in batches for efficiency
**Memory Optimization**:
```python
# backend/utils/memory_optimization.py
import gc
from typing import Generator
class MemoryOptimizedProcessor:
def process_large_dataset(self, data: list) -> Generator:
"""Process large datasets with memory optimization."""
batch_size = 1000
for i in range(0, len(data), batch_size):
batch = data[i:i + batch_size]
yield self.process_batch(batch)
# Force garbage collection
gc.collect()
def process_batch(self, batch: list):
"""Process a batch of data."""
# Batch processing logic
pass
```
### Error Handling and Resilience
**Circuit Breaker Pattern**:
```python
# backend/middleware/circuit_breaker.py
import asyncio
from enum import Enum
from typing import Callable, Any
class CircuitState(Enum):
CLOSED = "closed"
OPEN = "open"
HALF_OPEN = "half_open"
class CircuitBreaker:
def __init__(self, failure_threshold: int = 5, timeout: int = 60):
self.failure_threshold = failure_threshold
self.timeout = timeout
self.failure_count = 0
self.last_failure_time = None
self.state = CircuitState.CLOSED
async def call(self, func: Callable, *args, **kwargs) -> Any:
"""Execute function with circuit breaker protection."""
if self.state == CircuitState.OPEN:
if self._should_attempt_reset():
self.state = CircuitState.HALF_OPEN
else:
raise Exception("Circuit breaker is OPEN")
try:
result = await func(*args, **kwargs)
self._on_success()
return result
except Exception as e:
self._on_failure()
raise e
def _should_attempt_reset(self) -> bool:
"""Check if circuit breaker should attempt reset."""
return (
self.last_failure_time and
time.time() - self.last_failure_time >= self.timeout
)
def _on_success(self):
"""Handle successful execution."""
self.failure_count = 0
self.state = CircuitState.CLOSED
def _on_failure(self):
"""Handle failed execution."""
self.failure_count += 1
self.last_failure_time = time.time()
if self.failure_count >= self.failure_threshold:
self.state = CircuitState.OPEN
```
## 📊 Scaling Architecture Diagrams
### System Architecture
```mermaid
graph TB
subgraph "Load Balancer"
LB[Nginx Load Balancer]
end
subgraph "Frontend Cluster"
F1[Frontend Instance 1]
F2[Frontend Instance 2]
F3[Frontend Instance 3]
end
subgraph "Backend Cluster"
B1[Backend Instance 1]
B2[Backend Instance 2]
B3[Backend Instance 3]
end
subgraph "Database Cluster"
DB1[Primary Database]
DB2[Read Replica 1]
DB3[Read Replica 2]
end
subgraph "Cache Layer"
R1[Redis Instance 1]
R2[Redis Instance 2]
end
LB --> F1
LB --> F2
LB --> F3
F1 --> B1
F2 --> B2
F3 --> B3
B1 --> DB1
B2 --> DB1
B3 --> DB1
B1 --> DB2
B2 --> DB3
B3 --> DB2
B1 --> R1
B2 --> R1
B3 --> R2
```
### Scaling Process Flow
```mermaid
flowchart TD
A[Monitor Performance] --> B{Performance OK?}
B -->|Yes| C[Continue Normal Operations]
B -->|No| D[Analyze Bottlenecks]
D --> E{Database Issue?}
E -->|Yes| F[Scale Database]
E -->|No| G{Application Issue?}
G -->|Yes| H[Scale Application]
G -->|No| I{Infrastructure Issue?}
I -->|Yes| J[Scale Infrastructure]
I -->|No| K[Optimize Code]
F --> L[Update Configuration]
H --> L
J --> L
K --> L
L --> M[Deploy Changes]
M --> N[Monitor Results]
N --> A
C --> O[Regular Health Checks]
O --> A
```
## 🎯 Next Steps
### Immediate Actions (This Week)
1. **Performance Baseline**: Establish current performance baselines
2. **Monitoring Setup**: Set up comprehensive monitoring and alerting
3. **Load Testing**: Conduct load testing to identify bottlenecks
4. **Scaling Plan**: Develop scaling strategy and implementation plan
### Short-Term Planning (This Month)
1. **Infrastructure Scaling**: Implement infrastructure scaling solutions
2. **Application Optimization**: Optimize applications for better performance
3. **Database Scaling**: Implement database scaling strategies
4. **Caching Implementation**: Implement comprehensive caching strategies
### Long-Term Strategy (Next Quarter)
1. **Advanced Scaling**: Implement advanced scaling techniques
2. **Auto-Scaling**: Implement automatic scaling based on load
3. **Performance Excellence**: Achieve performance excellence goals
4. **Cost Optimization**: Optimize costs while maintaining performance
---
*Ready to scale your application? Start with [Codebase Exploration](codebase-exploration.md) to understand the current architecture before implementing scaling strategies!*

View File

@@ -0,0 +1,382 @@
# Self-Host Setup for Developers
## 🎯 Overview
This guide helps developers set up ALwrity for self-hosting. You'll learn how to deploy ALwrity on your own infrastructure, configure it for your needs, and maintain it independently.
## 🚀 What You'll Achieve
### Self-Hosting Benefits
- **Full Control**: Complete control over your ALwrity instance
- **Data Privacy**: Keep all data on your own infrastructure
- **Customization**: Full customization capabilities
- **Cost Control**: Predictable hosting costs
### Technical Requirements
- **Server Management**: Basic server administration skills
- **Docker Knowledge**: Understanding of Docker containers
- **Database Management**: Basic database administration
- **Network Configuration**: Basic networking knowledge
## 📋 Prerequisites
### System Requirements
**Minimum Requirements**:
- **CPU**: 2+ cores, 2.0+ GHz
- **RAM**: 4+ GB
- **Storage**: 20+ GB SSD
- **OS**: Ubuntu 20.04+, CentOS 8+, or Docker-compatible OS
**Recommended Requirements**:
- **CPU**: 4+ cores, 3.0+ GHz
- **RAM**: 8+ GB
- **Storage**: 50+ GB SSD
- **Network**: 100+ Mbps connection
### Software Requirements
**Required Software**:
- **Docker**: 20.10+
- **Docker Compose**: 2.0+
- **Git**: Latest version
- **Node.js**: 16+ (for frontend)
- **Python**: 3.9+ (for backend)
## 🛠️ Installation Process
### Step 1: Clone Repository
```bash
git clone https://github.com/your-org/alwrity.git
cd alwrity
```
### Step 2: Environment Configuration
```bash
# Copy environment template
cp backend/env_template.txt backend/.env
cp frontend/env_template.txt frontend/.env
# Edit configuration files
nano backend/.env
nano frontend/.env
```
### Step 3: Docker Setup
```bash
# Build and start services
docker-compose up -d
# Check service status
docker-compose ps
```
### Step 4: Database Setup
```bash
# Run database migrations
docker-compose exec backend python -m alembic upgrade head
# Create initial admin user
docker-compose exec backend python scripts/create_admin.py
```
## 📊 Configuration
### Backend Configuration
**Environment Variables**:
```env
# Database Configuration
DATABASE_URL=postgresql://user:password@db:5432/alwrity
# API Configuration
API_HOST=0.0.0.0
API_PORT=8000
DEBUG=false
# Security Configuration
SECRET_KEY=your-secret-key
JWT_SECRET=your-jwt-secret
# External Services
OPENAI_API_KEY=your-openai-key
STABILITY_API_KEY=your-stability-key
```
### Frontend Configuration
**Environment Variables**:
```env
# API Configuration
REACT_APP_API_URL=http://localhost:8000
REACT_APP_ENVIRONMENT=production
# Feature Flags
REACT_APP_ENABLE_SEO_DASHBOARD=true
REACT_APP_ENABLE_BLOG_WRITER=true
```
### Database Configuration
**PostgreSQL Setup**:
```yaml
# docker-compose.yml
services:
db:
image: postgres:13
environment:
POSTGRES_DB: alwrity
POSTGRES_USER: alwrity_user
POSTGRES_PASSWORD: secure_password
volumes:
- postgres_data:/var/lib/postgresql/data
ports:
- "5432:5432"
```
## 🎯 Deployment Options
### Docker Deployment
**Single Server**:
```bash
# Production deployment
docker-compose -f docker-compose.prod.yml up -d
# With SSL/HTTPS
docker-compose -f docker-compose.prod.ssl.yml up -d
```
**Multi-Server**:
```yaml
# docker-compose.cluster.yml
services:
backend:
image: alwrity/backend:latest
deploy:
replicas: 3
resources:
limits:
cpus: '1'
memory: 2G
```
### Kubernetes Deployment
**Helm Chart**:
```bash
# Install ALwrity on Kubernetes
helm install alwrity ./helm-chart \
--set database.password=secure_password \
--set ingress.host=your-domain.com
```
### Cloud Deployment
**AWS Deployment**:
- **ECS**: Elastic Container Service
- **EKS**: Elastic Kubernetes Service
- **EC2**: Elastic Compute Cloud
**Google Cloud Deployment**:
- **GKE**: Google Kubernetes Engine
- **Cloud Run**: Serverless containers
- **Compute Engine**: Virtual machines
## 📈 Production Setup
### Security Configuration
**SSL/TLS Setup**:
```nginx
# Nginx configuration
server {
listen 443 ssl;
server_name your-domain.com;
ssl_certificate /path/to/certificate.crt;
ssl_certificate_key /path/to/private.key;
location / {
proxy_pass http://localhost:3000;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
}
```
**Firewall Configuration**:
```bash
# UFW firewall setup
sudo ufw allow 22/tcp
sudo ufw allow 80/tcp
sudo ufw allow 443/tcp
sudo ufw enable
```
### Monitoring Setup
**Health Checks**:
```yaml
# docker-compose.yml
services:
backend:
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
interval: 30s
timeout: 10s
retries: 3
```
**Log Management**:
```bash
# Log rotation
sudo logrotate -f /etc/logrotate.d/alwrity
```
## 🛠️ Maintenance
### Backup Procedures
**Database Backup**:
```bash
# Daily backup script
#!/bin/bash
docker-compose exec -T db pg_dump -U alwrity_user alwrity > backup_$(date +%Y%m%d).sql
```
**Application Backup**:
```bash
# Backup volumes
docker run --rm -v alwrity_postgres_data:/data -v $(pwd):/backup alpine tar czf /backup/postgres_backup.tar.gz -C /data .
```
### Update Procedures
**Application Updates**:
```bash
# Update application
git pull origin main
docker-compose build
docker-compose up -d
```
**Database Updates**:
```bash
# Run migrations
docker-compose exec backend python -m alembic upgrade head
```
### Troubleshooting
**Common Issues**:
- **Port Conflicts**: Check for port conflicts
- **Memory Issues**: Monitor memory usage
- **Database Connection**: Verify database connectivity
- **SSL Certificates**: Check certificate validity
## 🎯 Performance Optimization
### Resource Optimization
**Memory Optimization**:
```yaml
# docker-compose.yml
services:
backend:
deploy:
resources:
limits:
memory: 2G
reservations:
memory: 1G
```
**CPU Optimization**:
```yaml
services:
backend:
deploy:
resources:
limits:
cpus: '2'
reservations:
cpus: '1'
```
### Caching Setup
**Redis Configuration**:
```yaml
services:
redis:
image: redis:alpine
command: redis-server --appendonly yes
volumes:
- redis_data:/data
```
## 📊 Monitoring and Logging
### Application Monitoring
**Health Endpoints**:
```python
@app.get("/health")
async def health_check():
return {"status": "healthy", "timestamp": datetime.utcnow()}
```
**Metrics Collection**:
```python
from prometheus_client import Counter, Histogram
request_count = Counter('requests_total', 'Total requests')
request_duration = Histogram('request_duration_seconds', 'Request duration')
```
### Log Management
**Structured Logging**:
```python
import structlog
logger = structlog.get_logger()
logger.info("User login", user_id=user.id, ip_address=request.client.host)
```
## 🎯 Security Best Practices
### Security Hardening
**Container Security**:
```dockerfile
# Use non-root user
RUN adduser --disabled-password --gecos '' alwrity
USER alwrity
```
**Network Security**:
```yaml
# docker-compose.yml
networks:
alwrity_network:
driver: bridge
internal: true
```
### Access Control
**SSH Configuration**:
```bash
# Disable root login
echo "PermitRootLogin no" >> /etc/ssh/sshd_config
# Use key-based authentication
echo "PasswordAuthentication no" >> /etc/ssh/sshd_config
```
## 🎯 Next Steps
### Immediate Actions (This Week)
1. **Server Setup**: Set up your server and install prerequisites
2. **Repository Clone**: Clone ALwrity repository
3. **Environment Setup**: Configure environment variables
4. **Initial Deployment**: Deploy ALwrity using Docker
### Short-Term Planning (This Month)
1. **Production Setup**: Configure for production use
2. **SSL Setup**: Configure SSL/TLS certificates
3. **Monitoring Setup**: Implement monitoring and logging
4. **Backup Procedures**: Set up backup and recovery procedures
### Long-Term Strategy (Next Quarter)
1. **Performance Optimization**: Optimize performance and resources
2. **Security Hardening**: Implement security best practices
3. **High Availability**: Implement high availability setup
4. **Automation**: Automate deployment and maintenance procedures
---
*Ready to self-host ALwrity? Start with the [API Quickstart](api-quickstart.md) to understand the platform architecture before setting up your own instance!*

View File

@@ -0,0 +1,445 @@
# Team Collaboration for Developers
## 🎯 Overview
This guide helps developers collaborate effectively on ALwrity development. You'll learn best practices for team development, code collaboration, project management, and maintaining code quality in a team environment.
## 🚀 What You'll Achieve
### Effective Collaboration
- **Code Collaboration**: Effective code sharing and collaboration practices
- **Project Management**: Team project management and coordination
- **Quality Assurance**: Maintain code quality in team environment
- **Knowledge Sharing**: Share knowledge and expertise effectively
### Team Development
- **Version Control**: Effective use of Git and version control
- **Code Reviews**: Implement effective code review processes
- **Continuous Integration**: Set up CI/CD for team development
- **Documentation**: Maintain team documentation and standards
## 📋 Collaboration Framework
### Development Workflow
**Git Workflow**:
1. **Feature Branches**: Create feature branches for new development
2. **Code Reviews**: All code must be reviewed before merging
3. **Testing**: All code must pass tests before merging
4. **Documentation**: Update documentation with code changes
**Branch Strategy**:
- **Main Branch**: Stable production code
- **Develop Branch**: Integration branch for features
- **Feature Branches**: Individual feature development
- **Hotfix Branches**: Critical bug fixes
### Team Roles
**Development Roles**:
- **Lead Developer**: Technical leadership and architecture decisions
- **Senior Developers**: Complex feature development and mentoring
- **Junior Developers**: Feature development and learning
- **DevOps Engineer**: Infrastructure and deployment management
**Collaboration Roles**:
- **Product Owner**: Feature requirements and prioritization
- **QA Engineer**: Testing and quality assurance
- **Technical Writer**: Documentation and user guides
- **UI/UX Designer**: User interface and experience design
## 🛠️ Version Control Best Practices
### Git Workflow
**Branch Naming Convention**:
```bash
# Feature branches
feature/user-authentication
feature/seo-dashboard-enhancement
feature/blog-writer-improvements
# Bug fix branches
bugfix/login-error-handling
bugfix/seo-analysis-timeout
# Hotfix branches
hotfix/critical-security-patch
hotfix/database-connection-issue
```
**Commit Message Standards**:
```bash
# Commit message format
<type>(<scope>): <description>
# Examples
feat(auth): add OAuth2 authentication support
fix(seo): resolve SEO analysis timeout issue
docs(api): update API documentation for new endpoints
test(blog): add unit tests for blog writer service
```
### Pull Request Process
**PR Template**:
```markdown
## Description
Brief description of changes
## Type of Change
- [ ] Bug fix
- [ ] New feature
- [ ] Breaking change
- [ ] Documentation update
## Testing
- [ ] Unit tests pass
- [ ] Integration tests pass
- [ ] Manual testing completed
## Checklist
- [ ] Code follows style guidelines
- [ ] Self-review completed
- [ ] Documentation updated
- [ ] No breaking changes
```
## 📊 Code Review Process
### Review Guidelines
**Code Quality Standards**:
- **Functionality**: Code works as intended
- **Readability**: Code is easy to read and understand
- **Performance**: Code performs efficiently
- **Security**: Code follows security best practices
- **Testing**: Code includes appropriate tests
**Review Checklist**:
- [ ] Code follows project conventions
- [ ] No obvious bugs or issues
- [ ] Proper error handling
- [ ] Adequate test coverage
- [ ] Documentation updated
- [ ] No security vulnerabilities
### Review Process
**Review Assignment**:
```yaml
# .github/CODEOWNERS
# Global owners
* @team-lead @senior-dev
# Backend specific
/backend/ @backend-team
# Frontend specific
/frontend/ @frontend-team
# API documentation
/docs/api/ @api-team @tech-writer
```
**Review Timeline**:
- **Initial Review**: Within 24 hours
- **Follow-up Reviews**: Within 12 hours
- **Final Approval**: Within 48 hours
- **Emergency Reviews**: Within 4 hours
## 🎯 Project Management
### Task Management
**Issue Tracking**:
```markdown
# Issue Template
## User Story
As a [user type], I want [functionality] so that [benefit]
## Acceptance Criteria
- [ ] Criterion 1
- [ ] Criterion 2
- [ ] Criterion 3
## Technical Requirements
- Backend changes required
- Frontend changes required
- Database changes required
- API changes required
## Definition of Done
- [ ] Code implemented and tested
- [ ] Code reviewed and approved
- [ ] Documentation updated
- [ ] Deployed to staging
- [ ] User acceptance testing passed
```
**Sprint Planning**:
- **Sprint Duration**: 2 weeks
- **Sprint Planning**: First day of sprint
- **Daily Standups**: 15-minute daily meetings
- **Sprint Review**: Demo and retrospective
### Communication Tools
**Development Communication**:
- **Slack**: Daily communication and quick questions
- **GitHub Issues**: Bug tracking and feature requests
- **Pull Requests**: Code discussion and review
- **Wiki**: Documentation and knowledge sharing
**Meeting Structure**:
- **Daily Standups**: Progress updates and blockers
- **Sprint Planning**: Sprint goal and task assignment
- **Sprint Review**: Demo and feedback
- **Retrospective**: Process improvement discussion
## 🛠️ Development Tools
### IDE and Editor Setup
**Recommended Tools**:
- **VS Code**: Popular choice with excellent extensions
- **PyCharm**: Professional Python development
- **WebStorm**: Professional JavaScript/TypeScript development
- **Vim/Neovim**: Lightweight and powerful
**Shared Configuration**:
```json
// .vscode/settings.json
{
"editor.formatOnSave": true,
"editor.codeActionsOnSave": {
"source.organizeImports": true
},
"python.defaultInterpreterPath": "./backend/venv/bin/python",
"typescript.preferences.importModuleSpecifier": "relative"
}
```
### Code Quality Tools
**Backend Tools**:
```python
# pyproject.toml
[tool.black]
line-length = 88
target-version = ['py39']
[tool.isort]
profile = "black"
multi_line_output = 3
[tool.pytest.ini_options]
testpaths = ["tests"]
python_files = ["test_*.py"]
```
**Frontend Tools**:
```json
// package.json
{
"scripts": {
"lint": "eslint src --ext .ts,.tsx",
"lint:fix": "eslint src --ext .ts,.tsx --fix",
"format": "prettier --write src/**/*.{ts,tsx,css}",
"type-check": "tsc --noEmit"
}
}
```
## 📈 Continuous Integration
### CI/CD Pipeline
**GitHub Actions Workflow**:
```yaml
# .github/workflows/ci.yml
name: CI/CD Pipeline
on:
push:
branches: [ main, develop ]
pull_request:
branches: [ main, develop ]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.9'
- name: Install dependencies
run: |
cd backend
pip install -r requirements.txt
- name: Run tests
run: |
cd backend
pytest
- name: Set up Node.js
uses: actions/setup-node@v3
with:
node-version: '16'
- name: Install frontend dependencies
run: |
cd frontend
npm install
- name: Run frontend tests
run: |
cd frontend
npm test
```
### Quality Gates
**Automated Checks**:
- **Code Formatting**: Black/isort for Python, Prettier for TypeScript
- **Linting**: flake8 for Python, ESLint for TypeScript
- **Type Checking**: mypy for Python, TypeScript compiler
- **Testing**: pytest for Python, Jest for TypeScript
- **Security**: bandit for Python, npm audit for Node.js
## 🎯 Knowledge Sharing
### Documentation Standards
**Code Documentation**:
```python
def analyze_seo_performance(url: str, keywords: List[str]) -> SEOAnalysis:
"""
Analyze SEO performance for a given URL.
Args:
url: The URL to analyze
keywords: List of target keywords
Returns:
SEOAnalysis object with analysis results
Raises:
ValidationError: If URL is invalid
AnalysisError: If analysis fails
"""
# Implementation here
```
**API Documentation**:
```python
@app.get("/api/seo/analyze", response_model=SEOAnalysisResponse)
async def analyze_seo(
url: str = Query(..., description="URL to analyze"),
keywords: List[str] = Query(..., description="Target keywords")
) -> SEOAnalysisResponse:
"""
Analyze SEO performance for a URL.
This endpoint performs comprehensive SEO analysis including:
- Technical SEO audit
- Content analysis
- Performance metrics
- Keyword optimization
Returns detailed analysis results and recommendations.
"""
```
### Knowledge Base
**Team Wiki Structure**:
```
docs/
├── architecture/ # System architecture documentation
├── api/ # API documentation
├── deployment/ # Deployment guides
├── development/ # Development guides
├── troubleshooting/ # Common issues and solutions
└── best-practices/ # Team best practices
```
## 🛠️ Conflict Resolution
### Code Conflicts
**Merge Conflict Resolution**:
```bash
# When conflicts occur
git status # Check conflict files
git diff # Review conflicts
# Edit files to resolve conflicts
git add <resolved-files> # Stage resolved files
git commit # Commit resolution
```
**Conflict Prevention**:
- **Frequent Syncing**: Pull latest changes regularly
- **Small Commits**: Make small, focused commits
- **Clear Communication**: Communicate about overlapping work
- **Feature Flags**: Use feature flags for incomplete features
### Team Conflicts
**Resolution Process**:
1. **Direct Communication**: Discuss issues directly with team members
2. **Team Lead Mediation**: Escalate to team lead if needed
3. **Technical Decision**: Use technical decision records (TDRs)
4. **Team Retrospective**: Address process issues in retrospectives
## 📊 Performance Metrics
### Team Metrics
**Development Metrics**:
- **Velocity**: Story points completed per sprint
- **Cycle Time**: Time from start to completion
- **Lead Time**: Time from request to delivery
- **Code Review Time**: Average time for code reviews
**Quality Metrics**:
- **Bug Rate**: Bugs found per feature
- **Test Coverage**: Percentage of code covered by tests
- **Code Review Coverage**: Percentage of code reviewed
- **Technical Debt**: Estimated technical debt
### Individual Metrics
**Developer Metrics**:
- **Commit Frequency**: Regular contribution to codebase
- **Code Review Participation**: Active participation in reviews
- **Documentation Contribution**: Contribution to documentation
- **Knowledge Sharing**: Sharing knowledge with team
## 🎯 Best Practices
### Team Best Practices
**Communication**:
1. **Be Clear**: Communicate clearly and concisely
2. **Be Respectful**: Respect different opinions and approaches
3. **Be Proactive**: Share information proactively
4. **Be Collaborative**: Work together towards common goals
5. **Be Constructive**: Provide constructive feedback
**Development Practices**:
- **Code Reviews**: All code must be reviewed
- **Testing**: Write tests for all new code
- **Documentation**: Document all changes
- **Security**: Follow security best practices
- **Performance**: Consider performance implications
## 🎯 Next Steps
### Immediate Actions (This Week)
1. **Team Setup**: Set up team communication channels
2. **Workflow Establishment**: Establish development workflow
3. **Tool Configuration**: Configure development tools
4. **Initial Planning**: Plan first sprint or milestone
### Short-Term Planning (This Month)
1. **Process Refinement**: Refine development processes
2. **Team Training**: Train team on tools and processes
3. **First Features**: Complete first team features
4. **Retrospective**: Conduct first team retrospective
### Long-Term Strategy (Next Quarter)
1. **Process Optimization**: Optimize development processes
2. **Team Scaling**: Scale team and processes
3. **Knowledge Sharing**: Establish knowledge sharing culture
4. **Continuous Improvement**: Implement continuous improvement practices
---
*Ready to collaborate effectively? Start with [Codebase Exploration](codebase-exploration.md) to understand the project structure before joining the development team!*