Base code
This commit is contained in:
677
docs-site/docs/user-journeys/developers/scaling.md
Normal file
677
docs-site/docs/user-journeys/developers/scaling.md
Normal file
@@ -0,0 +1,677 @@
|
||||
# Scaling for Developers
|
||||
|
||||
## 🎯 Overview
|
||||
|
||||
This guide helps developers scale ALwrity applications and infrastructure effectively. You'll learn how to handle increased load, optimize performance, implement caching strategies, and build scalable architectures.
|
||||
|
||||
## 🚀 What You'll Achieve
|
||||
|
||||
### Technical Scaling
|
||||
- **Application Scaling**: Scale applications to handle increased load
|
||||
- **Database Scaling**: Scale databases for performance and reliability
|
||||
- **Infrastructure Scaling**: Scale infrastructure components effectively
|
||||
- **Performance Optimization**: Optimize performance for scale
|
||||
|
||||
### Operational Scaling
|
||||
- **Deployment Scaling**: Scale deployment processes and automation
|
||||
- **Monitoring Scaling**: Scale monitoring and observability systems
|
||||
- **Team Scaling**: Scale development team and processes
|
||||
- **Cost Optimization**: Optimize costs while scaling operations
|
||||
|
||||
## 📋 Scaling Strategy Framework
|
||||
|
||||
### Scaling Dimensions
|
||||
**Horizontal Scaling**:
|
||||
1. **Load Balancing**: Distribute load across multiple servers
|
||||
2. **Microservices**: Break applications into microservices
|
||||
3. **Database Sharding**: Shard databases for better performance
|
||||
4. **CDN Implementation**: Implement content delivery networks
|
||||
|
||||
**Vertical Scaling**:
|
||||
- **Resource Enhancement**: Increase CPU, memory, and storage
|
||||
- **Performance Tuning**: Optimize application performance
|
||||
- **Database Optimization**: Optimize database performance
|
||||
- **Caching Implementation**: Implement effective caching strategies
|
||||
|
||||
### Scaling Planning
|
||||
**Capacity Planning**:
|
||||
- **Load Analysis**: Analyze current and projected loads
|
||||
- **Resource Requirements**: Plan resource requirements for scaling
|
||||
- **Performance Targets**: Define performance targets and metrics
|
||||
- **Cost Planning**: Plan scaling costs and budgets
|
||||
|
||||
**Risk Assessment**:
|
||||
- **Performance Risks**: Assess performance risks during scaling
|
||||
- **Reliability Risks**: Evaluate reliability and availability risks
|
||||
- **Cost Risks**: Assess cost implications of scaling
|
||||
- **Technical Risks**: Identify technical challenges and solutions
|
||||
|
||||
## 🛠️ Application Scaling
|
||||
|
||||
### Backend Scaling
|
||||
**API Scaling**:
|
||||
```python
|
||||
# backend/middleware/rate_limiting.py
|
||||
from slowapi import Limiter, _rate_limit_exceeded_handler
|
||||
from slowapi.util import get_remote_address
|
||||
from slowapi.errors import RateLimitExceeded
|
||||
|
||||
limiter = Limiter(key_func=get_remote_address)
|
||||
|
||||
@app.middleware("http")
|
||||
async def rate_limit_middleware(request: Request, call_next):
|
||||
# Rate limiting implementation
|
||||
return await call_next(request)
|
||||
|
||||
@app.get("/api/content/generate")
|
||||
@limiter.limit("10/minute")
|
||||
async def generate_content(request: Request):
|
||||
"""Generate content with rate limiting."""
|
||||
# Content generation logic
|
||||
```
|
||||
|
||||
**Database Scaling**:
|
||||
```python
|
||||
# backend/database/connection_pool.py
|
||||
from sqlalchemy.pool import QueuePool
|
||||
from sqlalchemy import create_engine
|
||||
|
||||
# Connection pooling for scalability
|
||||
engine = create_engine(
|
||||
DATABASE_URL,
|
||||
poolclass=QueuePool,
|
||||
pool_size=20,
|
||||
max_overflow=30,
|
||||
pool_pre_ping=True,
|
||||
pool_recycle=3600
|
||||
)
|
||||
```
|
||||
|
||||
### Frontend Scaling
|
||||
**Component Optimization**:
|
||||
```typescript
|
||||
// frontend/src/components/OptimizedComponent.tsx
|
||||
import React, { memo, lazy, Suspense } from 'react';
|
||||
|
||||
// Lazy loading for better performance
|
||||
const HeavyComponent = lazy(() => import('./HeavyComponent'));
|
||||
|
||||
// Memoized component for performance
|
||||
const OptimizedComponent = memo(({ data }: { data: any[] }) => {
|
||||
return (
|
||||
<div>
|
||||
<Suspense fallback={<div>Loading...</div>}>
|
||||
<HeavyComponent data={data} />
|
||||
</Suspense>
|
||||
</div>
|
||||
);
|
||||
});
|
||||
|
||||
export default OptimizedComponent;
|
||||
```
|
||||
|
||||
**Bundle Optimization**:
|
||||
```javascript
|
||||
// webpack.config.js
|
||||
module.exports = {
|
||||
optimization: {
|
||||
splitChunks: {
|
||||
chunks: 'all',
|
||||
cacheGroups: {
|
||||
vendor: {
|
||||
test: /[\\/]node_modules[\\/]/,
|
||||
name: 'vendors',
|
||||
chunks: 'all',
|
||||
},
|
||||
common: {
|
||||
name: 'common',
|
||||
minChunks: 2,
|
||||
chunks: 'all',
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
};
|
||||
```
|
||||
|
||||
## 📊 Performance Optimization
|
||||
|
||||
### Caching Strategies
|
||||
**Redis Caching**:
|
||||
```python
|
||||
# backend/services/cache_service.py
|
||||
import redis
|
||||
import json
|
||||
from typing import Optional, Any
|
||||
|
||||
class CacheService:
|
||||
def __init__(self):
|
||||
self.redis_client = redis.Redis(
|
||||
host='localhost',
|
||||
port=6379,
|
||||
db=0,
|
||||
decode_responses=True
|
||||
)
|
||||
|
||||
async def get(self, key: str) -> Optional[Any]:
|
||||
"""Get value from cache."""
|
||||
value = self.redis_client.get(key)
|
||||
return json.loads(value) if value else None
|
||||
|
||||
async def set(self, key: str, value: Any, expire: int = 3600):
|
||||
"""Set value in cache with expiration."""
|
||||
self.redis_client.setex(
|
||||
key,
|
||||
expire,
|
||||
json.dumps(value, default=str)
|
||||
)
|
||||
|
||||
async def invalidate(self, pattern: str):
|
||||
"""Invalidate cache keys matching pattern."""
|
||||
keys = self.redis_client.keys(pattern)
|
||||
if keys:
|
||||
self.redis_client.delete(*keys)
|
||||
```
|
||||
|
||||
**Application-Level Caching**:
|
||||
```python
|
||||
# backend/middleware/caching_middleware.py
|
||||
from functools import wraps
|
||||
import hashlib
|
||||
|
||||
def cache_response(expire_seconds: int = 300):
|
||||
def decorator(func):
|
||||
@wraps(func)
|
||||
async def wrapper(*args, **kwargs):
|
||||
# Generate cache key
|
||||
cache_key = f"{func.__name__}:{hashlib.md5(str(kwargs).encode()).hexdigest()}"
|
||||
|
||||
# Check cache
|
||||
cached_result = await cache_service.get(cache_key)
|
||||
if cached_result:
|
||||
return cached_result
|
||||
|
||||
# Execute function and cache result
|
||||
result = await func(*args, **kwargs)
|
||||
await cache_service.set(cache_key, result, expire_seconds)
|
||||
return result
|
||||
return wrapper
|
||||
return decorator
|
||||
```
|
||||
|
||||
### Database Optimization
|
||||
**Query Optimization**:
|
||||
```python
|
||||
# backend/services/optimized_queries.py
|
||||
from sqlalchemy.orm import joinedload, selectinload
|
||||
from sqlalchemy import func, desc
|
||||
|
||||
class OptimizedQueryService:
|
||||
async def get_content_with_relations(self, content_id: int):
|
||||
"""Optimized query with eager loading."""
|
||||
return await self.db.query(Content)\
|
||||
.options(
|
||||
joinedload(Content.author),
|
||||
selectinload(Content.tags),
|
||||
joinedload(Content.seo_analysis)
|
||||
)\
|
||||
.filter(Content.id == content_id)\
|
||||
.first()
|
||||
|
||||
async def get_content_analytics(self, limit: int = 100):
|
||||
"""Optimized analytics query."""
|
||||
return await self.db.query(
|
||||
func.date(Content.created_at).label('date'),
|
||||
func.count(Content.id).label('content_count'),
|
||||
func.avg(Content.quality_score).label('avg_quality')
|
||||
)\
|
||||
.group_by(func.date(Content.created_at))\
|
||||
.order_by(desc('date'))\
|
||||
.limit(limit)\
|
||||
.all()
|
||||
```
|
||||
|
||||
**Database Indexing**:
|
||||
```sql
|
||||
-- backend/database/migrations/add_indexes.sql
|
||||
-- Performance indexes for scaling
|
||||
CREATE INDEX CONCURRENTLY idx_content_created_at ON content(created_at);
|
||||
CREATE INDEX CONCURRENTLY idx_content_author_id ON content(author_id);
|
||||
CREATE INDEX CONCURRENTLY idx_content_status ON content(status);
|
||||
CREATE INDEX CONCURRENTLY idx_seo_analysis_url ON seo_analysis(url);
|
||||
|
||||
-- Composite indexes for complex queries
|
||||
CREATE INDEX CONCURRENTLY idx_content_author_status
|
||||
ON content(author_id, status, created_at);
|
||||
```
|
||||
|
||||
## 🎯 Infrastructure Scaling
|
||||
|
||||
### Container Scaling
|
||||
**Docker Scaling**:
|
||||
```yaml
|
||||
# docker-compose.scale.yml
|
||||
version: '3.8'
|
||||
services:
|
||||
backend:
|
||||
image: alwrity/backend:latest
|
||||
deploy:
|
||||
replicas: 3
|
||||
resources:
|
||||
limits:
|
||||
cpus: '2'
|
||||
memory: 4G
|
||||
reservations:
|
||||
cpus: '1'
|
||||
memory: 2G
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 5s
|
||||
max_attempts: 3
|
||||
environment:
|
||||
- DATABASE_POOL_SIZE=20
|
||||
- REDIS_URL=redis://redis:6379/0
|
||||
depends_on:
|
||||
- db
|
||||
- redis
|
||||
|
||||
frontend:
|
||||
image: alwrity/frontend:latest
|
||||
deploy:
|
||||
replicas: 2
|
||||
resources:
|
||||
limits:
|
||||
cpus: '1'
|
||||
memory: 2G
|
||||
environment:
|
||||
- REACT_APP_API_URL=http://backend:8000
|
||||
```
|
||||
|
||||
**Kubernetes Scaling**:
|
||||
```yaml
|
||||
# k8s/deployment.yaml
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: alwrity-backend
|
||||
spec:
|
||||
replicas: 5
|
||||
selector:
|
||||
matchLabels:
|
||||
app: alwrity-backend
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app: alwrity-backend
|
||||
spec:
|
||||
containers:
|
||||
- name: backend
|
||||
image: alwrity/backend:latest
|
||||
resources:
|
||||
requests:
|
||||
memory: "2Gi"
|
||||
cpu: "1000m"
|
||||
limits:
|
||||
memory: "4Gi"
|
||||
cpu: "2000m"
|
||||
env:
|
||||
- name: DATABASE_URL
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: alwrity-secrets
|
||||
key: database-url
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: alwrity-backend-service
|
||||
spec:
|
||||
selector:
|
||||
app: alwrity-backend
|
||||
ports:
|
||||
- port: 8000
|
||||
targetPort: 8000
|
||||
type: LoadBalancer
|
||||
```
|
||||
|
||||
### Load Balancing
|
||||
**Nginx Configuration**:
|
||||
```nginx
|
||||
# nginx.conf
|
||||
upstream backend {
|
||||
least_conn;
|
||||
server backend1:8000 weight=3;
|
||||
server backend2:8000 weight=3;
|
||||
server backend3:8000 weight=2;
|
||||
}
|
||||
|
||||
upstream frontend {
|
||||
least_conn;
|
||||
server frontend1:3000;
|
||||
server frontend2:3000;
|
||||
}
|
||||
|
||||
server {
|
||||
listen 80;
|
||||
server_name alwrity.com;
|
||||
|
||||
location /api/ {
|
||||
proxy_pass http://backend;
|
||||
proxy_set_header Host $host;
|
||||
proxy_set_header X-Real-IP $remote_addr;
|
||||
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
|
||||
proxy_connect_timeout 30s;
|
||||
proxy_send_timeout 30s;
|
||||
proxy_read_timeout 30s;
|
||||
}
|
||||
|
||||
location / {
|
||||
proxy_pass http://frontend;
|
||||
proxy_set_header Host $host;
|
||||
proxy_set_header X-Real-IP $remote_addr;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 📈 Monitoring and Observability
|
||||
|
||||
### Application Monitoring
|
||||
**Metrics Collection**:
|
||||
```python
|
||||
# backend/monitoring/metrics.py
|
||||
from prometheus_client import Counter, Histogram, Gauge, generate_latest
|
||||
import time
|
||||
|
||||
# Application metrics
|
||||
request_count = Counter('http_requests_total', 'Total HTTP requests', ['method', 'endpoint'])
|
||||
request_duration = Histogram('http_request_duration_seconds', 'HTTP request duration')
|
||||
active_connections = Gauge('active_connections', 'Number of active connections')
|
||||
content_generation_time = Histogram('content_generation_seconds', 'Content generation time')
|
||||
|
||||
@app.middleware("http")
|
||||
async def metrics_middleware(request: Request, call_next):
|
||||
start_time = time.time()
|
||||
|
||||
# Increment request counter
|
||||
request_count.labels(
|
||||
method=request.method,
|
||||
endpoint=request.url.path
|
||||
).inc()
|
||||
|
||||
response = await call_next(request)
|
||||
|
||||
# Record request duration
|
||||
duration = time.time() - start_time
|
||||
request_duration.observe(duration)
|
||||
|
||||
return response
|
||||
|
||||
@app.get("/metrics")
|
||||
async def metrics():
|
||||
"""Prometheus metrics endpoint."""
|
||||
return Response(generate_latest(), media_type="text/plain")
|
||||
```
|
||||
|
||||
**Health Checks**:
|
||||
```python
|
||||
# backend/health/health_checks.py
|
||||
from fastapi import Depends
|
||||
from sqlalchemy.orm import Session
|
||||
import redis
|
||||
|
||||
async def database_health_check(db: Session = Depends(get_db)) -> bool:
|
||||
"""Check database connectivity."""
|
||||
try:
|
||||
db.execute("SELECT 1")
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
async def redis_health_check() -> bool:
|
||||
"""Check Redis connectivity."""
|
||||
try:
|
||||
redis_client = redis.Redis(host='redis', port=6379)
|
||||
redis_client.ping()
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
@app.get("/health")
|
||||
async def health_check():
|
||||
"""Comprehensive health check."""
|
||||
db_healthy = await database_health_check()
|
||||
redis_healthy = await redis_health_check()
|
||||
|
||||
status = "healthy" if db_healthy and redis_healthy else "unhealthy"
|
||||
|
||||
return {
|
||||
"status": status,
|
||||
"database": "healthy" if db_healthy else "unhealthy",
|
||||
"redis": "healthy" if redis_healthy else "unhealthy",
|
||||
"timestamp": datetime.utcnow().isoformat()
|
||||
}
|
||||
```
|
||||
|
||||
### Performance Monitoring
|
||||
**APM Integration**:
|
||||
```python
|
||||
# backend/monitoring/apm.py
|
||||
from elasticapm.contrib.fastapi import ElasticAPM
|
||||
from elasticapm.handlers.logging import LoggingHandler
|
||||
|
||||
# Elastic APM configuration
|
||||
apm = ElasticAPM(
|
||||
app,
|
||||
service_name="alwrity-backend",
|
||||
service_version="1.0.0",
|
||||
environment="production",
|
||||
server_url="http://apm-server:8200",
|
||||
secret_token="your-secret-token"
|
||||
)
|
||||
|
||||
# Custom performance tracking
|
||||
@apm.capture_span("content_generation")
|
||||
async def generate_content(request: ContentRequest):
|
||||
"""Generate content with APM tracking."""
|
||||
# Content generation logic
|
||||
pass
|
||||
```
|
||||
|
||||
## 🛠️ Scaling Best Practices
|
||||
|
||||
### Code Optimization
|
||||
**Performance Best Practices**:
|
||||
1. **Async/Await**: Use async/await for I/O operations
|
||||
2. **Connection Pooling**: Implement database connection pooling
|
||||
3. **Caching**: Implement multi-level caching strategies
|
||||
4. **Lazy Loading**: Use lazy loading for large datasets
|
||||
5. **Batch Processing**: Process data in batches for efficiency
|
||||
|
||||
**Memory Optimization**:
|
||||
```python
|
||||
# backend/utils/memory_optimization.py
|
||||
import gc
|
||||
from typing import Generator
|
||||
|
||||
class MemoryOptimizedProcessor:
|
||||
def process_large_dataset(self, data: list) -> Generator:
|
||||
"""Process large datasets with memory optimization."""
|
||||
batch_size = 1000
|
||||
|
||||
for i in range(0, len(data), batch_size):
|
||||
batch = data[i:i + batch_size]
|
||||
yield self.process_batch(batch)
|
||||
|
||||
# Force garbage collection
|
||||
gc.collect()
|
||||
|
||||
def process_batch(self, batch: list):
|
||||
"""Process a batch of data."""
|
||||
# Batch processing logic
|
||||
pass
|
||||
```
|
||||
|
||||
### Error Handling and Resilience
|
||||
**Circuit Breaker Pattern**:
|
||||
```python
|
||||
# backend/middleware/circuit_breaker.py
|
||||
import asyncio
|
||||
from enum import Enum
|
||||
from typing import Callable, Any
|
||||
|
||||
class CircuitState(Enum):
|
||||
CLOSED = "closed"
|
||||
OPEN = "open"
|
||||
HALF_OPEN = "half_open"
|
||||
|
||||
class CircuitBreaker:
|
||||
def __init__(self, failure_threshold: int = 5, timeout: int = 60):
|
||||
self.failure_threshold = failure_threshold
|
||||
self.timeout = timeout
|
||||
self.failure_count = 0
|
||||
self.last_failure_time = None
|
||||
self.state = CircuitState.CLOSED
|
||||
|
||||
async def call(self, func: Callable, *args, **kwargs) -> Any:
|
||||
"""Execute function with circuit breaker protection."""
|
||||
if self.state == CircuitState.OPEN:
|
||||
if self._should_attempt_reset():
|
||||
self.state = CircuitState.HALF_OPEN
|
||||
else:
|
||||
raise Exception("Circuit breaker is OPEN")
|
||||
|
||||
try:
|
||||
result = await func(*args, **kwargs)
|
||||
self._on_success()
|
||||
return result
|
||||
except Exception as e:
|
||||
self._on_failure()
|
||||
raise e
|
||||
|
||||
def _should_attempt_reset(self) -> bool:
|
||||
"""Check if circuit breaker should attempt reset."""
|
||||
return (
|
||||
self.last_failure_time and
|
||||
time.time() - self.last_failure_time >= self.timeout
|
||||
)
|
||||
|
||||
def _on_success(self):
|
||||
"""Handle successful execution."""
|
||||
self.failure_count = 0
|
||||
self.state = CircuitState.CLOSED
|
||||
|
||||
def _on_failure(self):
|
||||
"""Handle failed execution."""
|
||||
self.failure_count += 1
|
||||
self.last_failure_time = time.time()
|
||||
|
||||
if self.failure_count >= self.failure_threshold:
|
||||
self.state = CircuitState.OPEN
|
||||
```
|
||||
|
||||
## 📊 Scaling Architecture Diagrams
|
||||
|
||||
### System Architecture
|
||||
```mermaid
|
||||
graph TB
|
||||
subgraph "Load Balancer"
|
||||
LB[Nginx Load Balancer]
|
||||
end
|
||||
|
||||
subgraph "Frontend Cluster"
|
||||
F1[Frontend Instance 1]
|
||||
F2[Frontend Instance 2]
|
||||
F3[Frontend Instance 3]
|
||||
end
|
||||
|
||||
subgraph "Backend Cluster"
|
||||
B1[Backend Instance 1]
|
||||
B2[Backend Instance 2]
|
||||
B3[Backend Instance 3]
|
||||
end
|
||||
|
||||
subgraph "Database Cluster"
|
||||
DB1[Primary Database]
|
||||
DB2[Read Replica 1]
|
||||
DB3[Read Replica 2]
|
||||
end
|
||||
|
||||
subgraph "Cache Layer"
|
||||
R1[Redis Instance 1]
|
||||
R2[Redis Instance 2]
|
||||
end
|
||||
|
||||
LB --> F1
|
||||
LB --> F2
|
||||
LB --> F3
|
||||
|
||||
F1 --> B1
|
||||
F2 --> B2
|
||||
F3 --> B3
|
||||
|
||||
B1 --> DB1
|
||||
B2 --> DB1
|
||||
B3 --> DB1
|
||||
|
||||
B1 --> DB2
|
||||
B2 --> DB3
|
||||
B3 --> DB2
|
||||
|
||||
B1 --> R1
|
||||
B2 --> R1
|
||||
B3 --> R2
|
||||
```
|
||||
|
||||
### Scaling Process Flow
|
||||
```mermaid
|
||||
flowchart TD
|
||||
A[Monitor Performance] --> B{Performance OK?}
|
||||
B -->|Yes| C[Continue Normal Operations]
|
||||
B -->|No| D[Analyze Bottlenecks]
|
||||
|
||||
D --> E{Database Issue?}
|
||||
E -->|Yes| F[Scale Database]
|
||||
E -->|No| G{Application Issue?}
|
||||
|
||||
G -->|Yes| H[Scale Application]
|
||||
G -->|No| I{Infrastructure Issue?}
|
||||
|
||||
I -->|Yes| J[Scale Infrastructure]
|
||||
I -->|No| K[Optimize Code]
|
||||
|
||||
F --> L[Update Configuration]
|
||||
H --> L
|
||||
J --> L
|
||||
K --> L
|
||||
|
||||
L --> M[Deploy Changes]
|
||||
M --> N[Monitor Results]
|
||||
N --> A
|
||||
|
||||
C --> O[Regular Health Checks]
|
||||
O --> A
|
||||
```
|
||||
|
||||
## 🎯 Next Steps
|
||||
|
||||
### Immediate Actions (This Week)
|
||||
1. **Performance Baseline**: Establish current performance baselines
|
||||
2. **Monitoring Setup**: Set up comprehensive monitoring and alerting
|
||||
3. **Load Testing**: Conduct load testing to identify bottlenecks
|
||||
4. **Scaling Plan**: Develop scaling strategy and implementation plan
|
||||
|
||||
### Short-Term Planning (This Month)
|
||||
1. **Infrastructure Scaling**: Implement infrastructure scaling solutions
|
||||
2. **Application Optimization**: Optimize applications for better performance
|
||||
3. **Database Scaling**: Implement database scaling strategies
|
||||
4. **Caching Implementation**: Implement comprehensive caching strategies
|
||||
|
||||
### Long-Term Strategy (Next Quarter)
|
||||
1. **Advanced Scaling**: Implement advanced scaling techniques
|
||||
2. **Auto-Scaling**: Implement automatic scaling based on load
|
||||
3. **Performance Excellence**: Achieve performance excellence goals
|
||||
4. **Cost Optimization**: Optimize costs while maintaining performance
|
||||
|
||||
---
|
||||
|
||||
*Ready to scale your application? Start with [Codebase Exploration](codebase-exploration.md) to understand the current architecture before implementing scaling strategies!*
|
||||
Reference in New Issue
Block a user