"""SEO Dashboard API endpoints for ALwrity.""" from fastapi import FastAPI, HTTPException, Depends, status from pydantic import BaseModel, Field from typing import Dict, Any, List, Optional from datetime import datetime import json import os from loguru import logger import time # Import existing services from services.onboarding.api_key_manager import APIKeyManager from services.validation import check_all_api_keys from services.seo_analyzer import ComprehensiveSEOAnalyzer, SEOAnalysisResult, SEOAnalysisService from services.user_data_service import UserDataService from services.database import get_db_session from services.seo import SEODashboardService from middleware.auth_middleware import get_current_user # Initialize the SEO analyzer seo_analyzer = ComprehensiveSEOAnalyzer() # Pydantic models for SEO Dashboard class SEOHealthScore(BaseModel): score: int change: int trend: str label: str color: str class SEOMetric(BaseModel): value: float change: float trend: str description: str color: str class PlatformStatus(BaseModel): status: str connected: bool last_sync: Optional[str] = None data_points: Optional[int] = None class AIInsight(BaseModel): insight: str priority: str category: str action_required: bool tool_path: Optional[str] = None class SEODashboardData(BaseModel): health_score: SEOHealthScore key_insight: str priority_alert: str metrics: Dict[str, SEOMetric] platforms: Dict[str, PlatformStatus] ai_insights: List[AIInsight] last_updated: str website_url: Optional[str] = None # User's website URL from onboarding # New models for comprehensive SEO analysis class SEOAnalysisRequest(BaseModel): url: str target_keywords: Optional[List[str]] = None class SEOAnalysisResponse(BaseModel): url: str timestamp: datetime overall_score: int health_status: str critical_issues: List[Dict[str, Any]] warnings: List[Dict[str, Any]] recommendations: List[Dict[str, Any]] data: Dict[str, Any] success: bool message: str class SEOMetricsResponse(BaseModel): metrics: Dict[str, Any] critical_issues: List[Dict[str, Any]] warnings: List[Dict[str, Any]] recommendations: List[Dict[str, Any]] detailed_analysis: Dict[str, Any] timestamp: str url: str # Mock data for Phase 1 def get_mock_seo_data() -> SEODashboardData: """Get mock SEO dashboard data for Phase 1.""" # Try to get the user's website URL from the database website_url = None db_session = get_db_session() if db_session: try: user_data_service = UserDataService(db_session) website_url = user_data_service.get_user_website_url() logger.info(f"Retrieved website URL from database: {website_url}") except Exception as e: logger.error(f"Error fetching website URL from database: {e}") finally: db_session.close() return SEODashboardData( health_score=SEOHealthScore( score=78, change=12, trend="up", label="Good", color="#FF9800" ), key_insight="Your content strategy is working! Focus on technical SEO to reach 90+ score", priority_alert="Mobile speed needs attention - 2.8s load time", website_url=website_url, # Include the user's website URL metrics={ "traffic": SEOMetric( value=23450, change=23, trend="up", description="Strong growth!", color="#4CAF50" ), "rankings": SEOMetric( value=8, change=8, trend="up", description="Great work on content", color="#2196F3" ), "mobile": SEOMetric( value=2.8, change=-0.3, trend="down", description="Needs attention", color="#FF9800" ), "keywords": SEOMetric( value=156, change=5, trend="up", description="5 new opportunities", color="#9C27B0" ) }, platforms={ "google_search_console": PlatformStatus( status="excellent", connected=True, last_sync="2024-01-15T10:30:00Z", data_points=1250 ), "google_analytics": PlatformStatus( status="good", connected=True, last_sync="2024-01-15T10:25:00Z", data_points=890 ), "bing_webmaster": PlatformStatus( status="needs_attention", connected=False, last_sync=None, data_points=0 ) }, ai_insights=[ AIInsight( insight="Your mobile page speed is 2.8s - optimize images and enable compression", priority="high", category="performance", action_required=True, tool_path="/seo-tools/page-speed-optimizer" ), AIInsight( insight="Add structured data to improve rich snippet opportunities", priority="medium", category="technical", action_required=False, tool_path="/seo-tools/schema-generator" ), AIInsight( insight="Content quality score improved by 15% - great work!", priority="low", category="content", action_required=False ) ], last_updated="2024-01-15T10:30:00Z" ) def calculate_health_score(metrics: Dict[str, Any]) -> SEOHealthScore: """Calculate SEO health score based on metrics.""" # This would be replaced with actual calculation logic base_score = 75 change = 12 trend = "up" label = "Good" color = "#FF9800" return SEOHealthScore( score=base_score, change=change, trend=trend, label=label, color=color ) def generate_ai_insights(metrics: Dict[str, Any], platforms: Dict[str, Any]) -> List[AIInsight]: """Generate AI-powered insights based on metrics and platform data.""" insights = [] # Performance insights if metrics.get("mobile", {}).get("value", 0) > 2.5: insights.append(AIInsight( insight="Mobile page speed needs optimization - aim for under 2 seconds", priority="high", category="performance", action_required=True, tool_path="/seo-tools/page-speed-optimizer" )) # Technical insights if not platforms.get("google_search_console", {}).get("connected", False): insights.append(AIInsight( insight="Connect Google Search Console for better SEO monitoring", priority="medium", category="technical", action_required=True, tool_path="/seo-tools/search-console-setup" )) # Content insights if metrics.get("rankings", {}).get("change", 0) > 0: insights.append(AIInsight( insight="Rankings are improving - continue with current content strategy", priority="low", category="content", action_required=False )) return insights # API Endpoints async def get_seo_dashboard_data(current_user: dict = Depends(get_current_user)) -> SEODashboardData: """Get comprehensive SEO dashboard data.""" try: user_id = str(current_user.get('id')) db_session = get_db_session() if not db_session: logger.error("No database session available") return get_mock_seo_data() try: # Use new SEO dashboard service dashboard_service = SEODashboardService(db_session) overview_data = await dashboard_service.get_dashboard_overview(user_id) # Convert to SEODashboardData format return SEODashboardData( health_score=SEOHealthScore(**overview_data.get("health_score", {})), key_insight=overview_data.get("key_insight", "Connect your analytics accounts for personalized insights"), priority_alert=overview_data.get("priority_alert", "No alerts at this time"), metrics=_convert_metrics(overview_data.get("summary", {})), platforms=_convert_platforms(overview_data.get("platforms", {})), ai_insights=[AIInsight(**insight) for insight in overview_data.get("ai_insights", [])], last_updated=overview_data.get("last_updated", datetime.now().isoformat()), website_url=overview_data.get("website_url") ) finally: db_session.close() except Exception as e: logger.error(f"Error getting SEO dashboard data: {e}") # Fallback to mock data return get_mock_seo_data() async def get_seo_health_score(current_user: dict = Depends(get_current_user)) -> SEOHealthScore: """Get current SEO health score.""" try: user_id = str(current_user.get('id')) db_session = get_db_session() if not db_session: raise HTTPException(status_code=500, detail="Database connection unavailable") try: dashboard_service = SEODashboardService(db_session) overview_data = await dashboard_service.get_dashboard_overview(user_id) health_score_data = overview_data.get("health_score", {}) return SEOHealthScore(**health_score_data) finally: db_session.close() except Exception as e: logger.error(f"Error getting SEO health score: {e}") raise HTTPException(status_code=500, detail="Failed to get SEO health score") async def get_seo_metrics(current_user: dict = Depends(get_current_user)) -> Dict[str, SEOMetric]: """Get SEO metrics.""" try: user_id = str(current_user.get('id')) db_session = get_db_session() if not db_session: raise HTTPException(status_code=500, detail="Database connection unavailable") try: dashboard_service = SEODashboardService(db_session) overview_data = await dashboard_service.get_dashboard_overview(user_id) summary_data = overview_data.get("summary", {}) return _convert_metrics(summary_data) finally: db_session.close() except Exception as e: logger.error(f"Error getting SEO metrics: {e}") raise HTTPException(status_code=500, detail="Failed to get SEO metrics") async def get_platform_status( current_user: dict = Depends(get_current_user) ) -> Dict[str, Any]: """Get platform connection status.""" try: user_id = str(current_user.get('id')) db_session = get_db_session() if not db_session: logger.error("No database session available") raise HTTPException(status_code=500, detail="Database connection failed") try: # Use SEO dashboard service to get platform status dashboard_service = SEODashboardService(db_session) platform_status = await dashboard_service.get_platform_status(user_id) logger.info(f"Retrieved platform status for user {user_id}") return platform_status finally: db_session.close() except Exception as e: logger.error(f"Error getting platform status: {e}") raise HTTPException(status_code=500, detail="Failed to get platform status") async def get_ai_insights(current_user: dict = Depends(get_current_user)) -> List[AIInsight]: """Get AI-generated insights.""" try: user_id = str(current_user.get('id')) db_session = get_db_session() if not db_session: raise HTTPException(status_code=500, detail="Database connection unavailable") try: dashboard_service = SEODashboardService(db_session) overview_data = await dashboard_service.get_dashboard_overview(user_id) ai_insights_data = overview_data.get("ai_insights", []) return [AIInsight(**insight) for insight in ai_insights_data] finally: db_session.close() except Exception as e: logger.error(f"Error getting AI insights: {e}") raise HTTPException(status_code=500, detail="Failed to get AI insights") async def seo_dashboard_health_check(): """Health check for SEO dashboard.""" return {"status": "healthy", "service": "SEO Dashboard API"} # New comprehensive SEO analysis endpoints async def analyze_seo_comprehensive(request: SEOAnalysisRequest) -> SEOAnalysisResponse: """ Analyze a URL for comprehensive SEO performance (progressive mode) Args: request: SEOAnalysisRequest containing URL and optional target keywords Returns: SEOAnalysisResponse with detailed analysis results """ try: logger.info(f"Starting progressive SEO analysis for URL: {request.url}") # Use progressive analysis for comprehensive results with timeout handling result = seo_analyzer.analyze_url_progressive(request.url, request.target_keywords) # Store result in database db_session = get_db_session() if db_session: try: seo_service = SEOAnalysisService(db_session) stored_analysis = seo_service.store_analysis_result(result) if stored_analysis: logger.info(f"Stored progressive SEO analysis in database with ID: {stored_analysis.id}") else: logger.warning("Failed to store SEO analysis in database") except Exception as db_error: logger.error(f"Database error during analysis storage: {str(db_error)}") finally: db_session.close() # Convert to response format response_data = { 'url': result.url, 'timestamp': result.timestamp, 'overall_score': result.overall_score, 'health_status': result.health_status, 'critical_issues': result.critical_issues, 'warnings': result.warnings, 'recommendations': result.recommendations, 'data': result.data, 'success': True, 'message': f"Progressive SEO analysis completed successfully for {result.url}" } logger.info(f"Progressive SEO analysis completed for {request.url}. Overall score: {result.overall_score}") return SEOAnalysisResponse(**response_data) except Exception as e: logger.error(f"Error analyzing SEO for {request.url}: {str(e)}") raise HTTPException( status_code=500, detail=f"Error analyzing SEO: {str(e)}" ) async def analyze_seo_full(request: SEOAnalysisRequest) -> SEOAnalysisResponse: """ Analyze a URL for comprehensive SEO performance (full analysis) Args: request: SEOAnalysisRequest containing URL and optional target keywords Returns: SEOAnalysisResponse with detailed analysis results """ try: logger.info(f"Starting full SEO analysis for URL: {request.url}") # Use progressive analysis for comprehensive results result = seo_analyzer.analyze_url_progressive(request.url, request.target_keywords) # Store result in database db_session = get_db_session() if db_session: try: seo_service = SEOAnalysisService(db_session) stored_analysis = seo_service.store_analysis_result(result) if stored_analysis: logger.info(f"Stored full SEO analysis in database with ID: {stored_analysis.id}") else: logger.warning("Failed to store SEO analysis in database") except Exception as db_error: logger.error(f"Database error during analysis storage: {str(db_error)}") finally: db_session.close() # Convert to response format response_data = { 'url': result.url, 'timestamp': result.timestamp, 'overall_score': result.overall_score, 'health_status': result.health_status, 'critical_issues': result.critical_issues, 'warnings': result.warnings, 'recommendations': result.recommendations, 'data': result.data, 'success': True, 'message': f"Full SEO analysis completed successfully for {result.url}" } logger.info(f"Full SEO analysis completed for {request.url}. Overall score: {result.overall_score}") return SEOAnalysisResponse(**response_data) except Exception as e: logger.error(f"Error in full SEO analysis for {request.url}: {str(e)}") raise HTTPException( status_code=500, detail=f"Error in full SEO analysis: {str(e)}" ) async def get_seo_metrics_detailed(url: str) -> SEOMetricsResponse: """ Get detailed SEO metrics for dashboard display Args: url: The URL to analyze Returns: Detailed SEO metrics for React dashboard """ try: # Ensure URL has protocol if not url.startswith(('http://', 'https://')): url = f"https://{url}" logger.info(f"Getting detailed SEO metrics for URL: {url}") # Perform analysis result = seo_analyzer.analyze_url_progressive(url) # Extract metrics for dashboard metrics = { "overall_score": result.overall_score, "health_status": result.health_status, "url_structure_score": result.data.get('url_structure', {}).get('score', 0), "meta_data_score": result.data.get('meta_data', {}).get('score', 0), "content_score": result.data.get('content_analysis', {}).get('score', 0), "technical_score": result.data.get('technical_seo', {}).get('score', 0), "performance_score": result.data.get('performance', {}).get('score', 0), "accessibility_score": result.data.get('accessibility', {}).get('score', 0), "user_experience_score": result.data.get('user_experience', {}).get('score', 0), "security_score": result.data.get('security_headers', {}).get('score', 0) } # Add detailed data for each category dashboard_data = { "metrics": metrics, "critical_issues": result.critical_issues, "warnings": result.warnings, "recommendations": result.recommendations, "detailed_analysis": { "url_structure": result.data.get('url_structure', {}), "meta_data": result.data.get('meta_data', {}), "content_analysis": result.data.get('content_analysis', {}), "technical_seo": result.data.get('technical_seo', {}), "performance": result.data.get('performance', {}), "accessibility": result.data.get('accessibility', {}), "user_experience": result.data.get('user_experience', {}), "security_headers": result.data.get('security_headers', {}), "keyword_analysis": result.data.get('keyword_analysis', {}) }, "timestamp": result.timestamp.isoformat(), "url": result.url } logger.info(f"Detailed SEO metrics retrieved for {url}") return SEOMetricsResponse(**dashboard_data) except Exception as e: logger.error(f"Error getting SEO metrics for {url}: {str(e)}") raise HTTPException( status_code=500, detail=f"Error getting SEO metrics: {str(e)}" ) async def get_analysis_summary(url: str) -> Dict[str, Any]: """ Get a quick summary of SEO analysis for a URL Args: url: The URL to analyze Returns: Summary of SEO analysis """ try: # Ensure URL has protocol if not url.startswith(('http://', 'https://')): url = f"https://{url}" logger.info(f"Getting analysis summary for URL: {url}") # Perform analysis result = seo_analyzer.analyze_url_progressive(url) # Create summary summary = { "url": result.url, "overall_score": result.overall_score, "health_status": result.health_status, "critical_issues_count": len(result.critical_issues), "warnings_count": len(result.warnings), "recommendations_count": len(result.recommendations), "top_issues": result.critical_issues[:3], "top_recommendations": result.recommendations[:3], "analysis_timestamp": result.timestamp.isoformat() } logger.info(f"Analysis summary retrieved for {url}") return summary except Exception as e: logger.error(f"Error getting analysis summary for {url}: {str(e)}") raise HTTPException( status_code=500, detail=f"Error getting analysis summary: {str(e)}" ) async def batch_analyze_urls(urls: List[str]) -> Dict[str, Any]: """ Analyze multiple URLs in batch Args: urls: List of URLs to analyze Returns: Batch analysis results """ try: logger.info(f"Starting batch analysis for {len(urls)} URLs") results = [] for url in urls: try: # Ensure URL has protocol if not url.startswith(('http://', 'https://')): url = f"https://{url}" # Perform analysis result = seo_analyzer.analyze_url_progressive(url) # Add to results results.append({ "url": result.url, "overall_score": result.overall_score, "health_status": result.health_status, "critical_issues_count": len(result.critical_issues), "warnings_count": len(result.warnings), "success": True }) except Exception as e: # Add error result results.append({ "url": url, "overall_score": 0, "health_status": "error", "critical_issues_count": 0, "warnings_count": 0, "success": False, "error": str(e) }) batch_result = { "total_urls": len(urls), "successful_analyses": len([r for r in results if r['success']]), "failed_analyses": len([r for r in results if not r['success']]), "results": results } logger.info(f"Batch analysis completed. Success: {batch_result['successful_analyses']}/{len(urls)}") return batch_result except Exception as e: logger.error(f"Error in batch analysis: {str(e)}") raise HTTPException( status_code=500, detail=f"Error in batch analysis: {str(e)}" ) # New SEO Dashboard Endpoints with Real Data async def get_seo_dashboard_overview( current_user: dict = Depends(get_current_user), site_url: Optional[str] = None ) -> Dict[str, Any]: """Get comprehensive SEO dashboard overview with real GSC/Bing data.""" try: user_id = str(current_user.get('id')) db_session = get_db_session() if not db_session: logger.error("No database session available") raise HTTPException(status_code=500, detail="Database connection failed") try: # Use SEO dashboard service to get real data dashboard_service = SEODashboardService(db_session) overview_data = await dashboard_service.get_dashboard_overview(user_id, site_url) logger.info(f"Retrieved SEO dashboard overview for user {user_id}") return overview_data finally: db_session.close() except Exception as e: logger.error(f"Error getting SEO dashboard overview: {e}") raise HTTPException(status_code=500, detail="Failed to get dashboard overview") async def get_gsc_raw_data( current_user: dict = Depends(get_current_user), site_url: Optional[str] = None ) -> Dict[str, Any]: """Get raw GSC data for the specified site.""" try: user_id = str(current_user.get('id')) db_session = get_db_session() if not db_session: logger.error("No database session available") raise HTTPException(status_code=500, detail="Database connection failed") try: # Use SEO dashboard service to get GSC data dashboard_service = SEODashboardService(db_session) gsc_data = await dashboard_service.get_gsc_data(user_id, site_url) logger.info(f"Retrieved GSC raw data for user {user_id}") return gsc_data finally: db_session.close() except Exception as e: logger.error(f"Error getting GSC raw data: {e}") raise HTTPException(status_code=500, detail="Failed to get GSC data") async def get_bing_raw_data( current_user: dict = Depends(get_current_user), site_url: Optional[str] = None ) -> Dict[str, Any]: """Get raw Bing data for the specified site.""" try: user_id = str(current_user.get('id')) db_session = get_db_session() if not db_session: logger.error("No database session available") raise HTTPException(status_code=500, detail="Database connection failed") try: # Use SEO dashboard service to get Bing data dashboard_service = SEODashboardService(db_session) bing_data = await dashboard_service.get_bing_data(user_id, site_url) logger.info(f"Retrieved Bing raw data for user {user_id}") return bing_data finally: db_session.close() except Exception as e: logger.error(f"Error getting Bing raw data: {e}") raise HTTPException(status_code=500, detail="Failed to get Bing data") async def get_competitive_insights( current_user: dict = Depends(get_current_user), site_url: Optional[str] = None ) -> Dict[str, Any]: """Get competitive insights from onboarding step 3 data.""" try: user_id = str(current_user.get('id')) db_session = get_db_session() if not db_session: logger.error("No database session available") raise HTTPException(status_code=500, detail="Database connection failed") try: # Use SEO dashboard service to get competitive insights dashboard_service = SEODashboardService(db_session) insights_data = await dashboard_service.get_competitive_insights(user_id) logger.info(f"Retrieved competitive insights for user {user_id}") return insights_data finally: db_session.close() except Exception as e: logger.error(f"Error getting competitive insights: {e}") raise HTTPException(status_code=500, detail="Failed to get competitive insights") async def refresh_analytics_data( current_user: dict = Depends(get_current_user), site_url: Optional[str] = None ) -> Dict[str, Any]: """Refresh analytics data by invalidating cache and fetching fresh data.""" try: user_id = str(current_user.get('id')) db_session = get_db_session() if not db_session: logger.error("No database session available") raise HTTPException(status_code=500, detail="Database connection failed") try: # Use SEO dashboard service to refresh data dashboard_service = SEODashboardService(db_session) refresh_result = await dashboard_service.refresh_analytics_data(user_id, site_url) logger.info(f"Refreshed analytics data for user {user_id}") return refresh_result finally: db_session.close() except Exception as e: logger.error(f"Error refreshing analytics data: {e}") raise HTTPException(status_code=500, detail="Failed to refresh analytics data") # Helper methods for data conversion def _convert_metrics(summary_data: Dict[str, Any]) -> Dict[str, SEOMetric]: """Convert summary data to SEOMetric format.""" try: return { "traffic": SEOMetric( value=summary_data.get("clicks", 0), change=0, # Would calculate from historical data trend="up", description="Organic traffic", color="#4CAF50" ), "rankings": SEOMetric( value=summary_data.get("position", 0), change=0, # Would calculate from historical data trend="up", description="Average ranking", color="#2196F3" ), "mobile": SEOMetric( value=0, # Would get from performance data change=0, trend="stable", description="Mobile speed", color="#FF9800" ), "keywords": SEOMetric( value=0, # Would count from query data change=0, trend="up", description="Keywords tracked", color="#9C27B0" ) } except Exception as e: logger.error(f"Error converting metrics: {e}") return {} def _convert_platforms(platform_data: Dict[str, Any]) -> Dict[str, PlatformStatus]: """Convert platform data to PlatformStatus format.""" try: return { "google_search_console": PlatformStatus( status="connected" if platform_data.get("gsc", {}).get("connected", False) else "disconnected", connected=platform_data.get("gsc", {}).get("connected", False), last_sync=platform_data.get("gsc", {}).get("last_sync"), data_points=len(platform_data.get("gsc", {}).get("sites", [])) ), "bing_webmaster": PlatformStatus( status="connected" if platform_data.get("bing", {}).get("connected", False) else "disconnected", connected=platform_data.get("bing", {}).get("connected", False), last_sync=platform_data.get("bing", {}).get("last_sync"), data_points=len(platform_data.get("bing", {}).get("sites", [])) ) } except Exception as e: logger.error(f"Error converting platforms: {e}") return {}