# Phase 1 Implementation Review & Gap Analysis **Date**: 2025-01-29 **Status**: βœ… Phase 1 Complete - Ready for End-User Testing --- ## πŸ“Š Gap Status Summary | Gap | Status | Implementation Details | |-----|--------|----------------------| | **1. Persona-Aware Defaults Integration** | βœ… **COMPLETE** | Frontend fetches and applies defaults on wizard load | | **2. Research Persona Integration** | βœ… **COMPLETE** | Backend enriches context with persona data | | **3. Provider Auto-Selection (Exa First)** | βœ… **COMPLETE** | Exa β†’ Tavily β†’ Google for all modes | | **4. Visual Status Indicators** | βœ… **COMPLETE** | Provider chips show actual availability | | **5. Domain Suggestions Auto-Population** | βœ… **VERIFIED** | Industry change triggers domain suggestions | | **6. AI Query Enhancement** | ❌ **NOT STARTED** | Phase 2 feature | | **7. Smart Preset Generation** | ❌ **NOT STARTED** | Phase 2 feature (depends on research persona) | | **8. Date Range & Source Type Filtering** | ❌ **NOT STARTED** | Phase 2 feature | **Completion Rate**: 5/8 gaps addressed (62.5%) --- ## βœ… Implemented Features ### 1. Persona-Aware Defaults Integration βœ… **What Was Implemented:** - `getResearchConfig()` now fetches both provider availability AND persona defaults in parallel - `ResearchInput.tsx` applies persona defaults on component mount: - Industry auto-fills if currently "General" - Target audience auto-fills if currently "General" - Exa domains auto-populate if Exa is available and domains not already set - Exa category auto-applies if not already set **Files Modified:** - `frontend/src/api/researchConfig.ts` - Fetches persona defaults - `frontend/src/components/Research/steps/ResearchInput.tsx` - Applies defaults (lines 85-114) **How It Works:** 1. Wizard loads β†’ `getResearchConfig()` called 2. API fetches `/api/research/persona-defaults` in parallel with provider status 3. If fields are "General" (default), persona defaults are applied 4. User can still override any auto-filled values **Testing Notes:** - βœ… Works for new users (fields start as "General") - ⚠️ May not apply if localStorage has saved state with non-General values (intentional - respects user choices) - βœ… Graceful fallback if persona API fails --- ### 2. Research Persona Integration βœ… **What Was Implemented:** - `ResearchEngine` now fetches and uses research persona during research execution - Persona data enriches the research context: - Industry and target audience (if not set) - Suggested Exa domains (if not set) - Suggested Exa category (if not set) - Uses cached persona (7-day TTL) - no expensive LLM calls during research **Files Modified:** - `backend/services/research/core/research_engine.py`: - Added `_get_research_persona()` method (lines 88-114) - Added `_enrich_context_with_persona()` method (lines 116-152) - Integrated into `research()` method (lines 171-177) **How It Works:** 1. User executes research β†’ `ResearchEngine.research()` called 2. Engine fetches cached research persona for user (if available) 3. Persona data enriches the `ResearchContext`: - Only applies if fields are not already set - User-provided values always take precedence 4. Enriched context passed to `ParameterOptimizer` 5. Optimizer uses persona data for better parameter selection **Testing Notes:** - βœ… Only loads cached persona (fast, no LLM calls) - βœ… Graceful fallback if persona not available - βœ… User overrides are respected - ⚠️ Requires user to have completed onboarding and have research persona generated --- ### 3. Provider Auto-Selection (Exa First) βœ… **What Was Implemented:** - **Frontend**: Auto-selects Exa β†’ Tavily β†’ Google for ALL modes (including basic) - **Backend**: `ParameterOptimizer` always prefers Exa β†’ Tavily β†’ Google - Removed mode-based provider selection logic **Files Modified:** - `frontend/src/components/Research/steps/ResearchInput.tsx` (lines 154-191) - `backend/services/research/core/parameter_optimizer.py` (lines 176-224) **Priority Order:** 1. **Exa** (Primary) - Neural semantic search, best for all content types 2. **Tavily** (Secondary) - AI-powered search, good for real-time/news 3. **Google** (Fallback) - Gemini grounding, used when others unavailable **Testing Notes:** - βœ… Exa selected when available (regardless of mode) - βœ… Falls back to Tavily if Exa unavailable - βœ… Falls back to Google if both unavailable - βœ… User can still manually override provider --- ### 4. Visual Status Indicators βœ… **What Was Implemented:** - `ProviderChips` component shows actual provider availability - Status dots: Green = configured, Red = not configured - Reordered to show priority: Exa β†’ Tavily β†’ Google - Updated tooltips to indicate provider roles **Files Modified:** - `frontend/src/components/Research/steps/components/ProviderChips.tsx` **Visual Changes:** - Exa shown first (primary provider) - Tavily shown second (secondary provider) - Google shown third (fallback provider) - Status dots reflect actual API key configuration **Testing Notes:** - βœ… Status indicators reflect real API key status - βœ… Tooltips explain provider roles - βœ… No longer tied to "advanced mode" toggle --- ### 5. Domain Suggestions Auto-Population βœ… **What Was Implemented:** - Industry change triggers domain suggestions (already existed) - Persona defaults also provide domain suggestions - Works for both Exa and Tavily providers **Files Modified:** - `frontend/src/components/Research/steps/ResearchInput.tsx` (lines 193-225) - Uses existing `getIndustryDomainSuggestions()` utility **How It Works:** 1. User selects industry β†’ `useEffect` triggers 2. `getIndustryDomainSuggestions(industry)` called 3. Domains auto-populate in Exa config if Exa available 4. Persona defaults also provide domains on initial load **Testing Notes:** - βœ… Industry change triggers domain suggestions - βœ… Persona defaults provide domains on load - βœ… Works for both Exa and Tavily - ⚠️ Domains only auto-populate for Exa (Tavily domains need manual transfer) --- ## ❌ Remaining Gaps (Phase 2) ### 6. AI Query Enhancement ❌ **Status**: Not Started **Priority**: High **Dependencies**: Research persona (βœ… now available) **What's Needed:** - Backend service to enhance vague user queries - Endpoint: `/api/research/enhance-query` - Frontend "Enhance Query" button - Uses research persona's `query_enhancement_rules` **Implementation Plan:** 1. Create `backend/services/research/core/query_enhancer.py` 2. Add `/api/research/enhance-query` endpoint 3. Add UI button in `ResearchInput.tsx` 4. Integrate with research persona rules --- ### 7. Smart Preset Generation ❌ **Status**: Not Started **Priority**: Medium **Dependencies**: Research persona (βœ… now available) **What's Needed:** - Generate presets from research persona - Use persona's `recommended_presets` field - Display in frontend wizard - Learn from successful research patterns **Implementation Plan:** 1. Use research persona's `recommended_presets` field 2. Display presets in `ResearchInput.tsx` 3. Add preset generation service (future) 4. Track successful research patterns (future) --- ### 8. Date Range & Source Type Filtering ❌ **Status**: Not Started **Priority**: Medium **What's Needed:** - Add date range controls to frontend - Add source type checkboxes - Pass to Research Engine API - Integrate with providers (Tavily supports time_range) **Implementation Plan:** 1. Add `date_range` and `source_types` to `ResearchContext` 2. Add UI controls (collapsible section or advanced mode) 3. Update `ResearchEngine` to pass to providers 4. Test with Tavily time_range parameter --- ## πŸ§ͺ End-User Testing Checklist ### Test Scenario 1: New User (No Onboarding) - [ ] Open Research Wizard - [ ] Verify fields start as "General" - [ ] Verify provider auto-selects to Exa (if available) - [ ] Verify status indicators show correct provider availability - [ ] Enter keywords and execute research - [ ] Verify research completes successfully ### Test Scenario 2: User with Onboarding (Persona Available) - [ ] Open Research Wizard - [ ] Verify industry auto-fills from persona defaults - [ ] Verify target audience auto-fills from persona defaults - [ ] Verify Exa domains auto-populate (if Exa available) - [ ] Verify Exa category auto-applies - [ ] Execute research - [ ] Verify backend logs show persona enrichment - [ ] Verify research uses persona-suggested domains/category ### Test Scenario 3: Provider Availability - [ ] Test with Exa available β†’ Should select Exa - [ ] Test with only Tavily available β†’ Should select Tavily - [ ] Test with only Google available β†’ Should select Google - [ ] Verify status chips show correct colors (green/red) - [ ] Verify tooltips explain provider roles ### Test Scenario 4: Provider Fallback - [ ] Configure only Exa β†’ Execute research β†’ Verify Exa used - [ ] Disable Exa, enable Tavily β†’ Execute research β†’ Verify Tavily used - [ ] Disable both, enable Google β†’ Execute research β†’ Verify Google used ### Test Scenario 5: User Overrides - [ ] Auto-fill persona defaults - [ ] Manually change industry β†’ Verify override works - [ ] Manually change provider β†’ Verify override works - [ ] Execute research β†’ Verify user values are respected ### Test Scenario 6: Domain Suggestions - [ ] Select "Healthcare" industry β†’ Verify domains auto-populate - [ ] Select "Technology" industry β†’ Verify domains change - [ ] Verify domains appear in Exa options - [ ] Execute research β†’ Verify domains are used in search --- ## πŸ“‹ Next Implementation Items (Phase 2) ### Priority 1: High-Value Features **1. AI Query Enhancement** (High Priority) - **Impact**: Transforms vague inputs into actionable queries - **Effort**: Medium (2-3 days) - **Dependencies**: βœ… Research persona available - **Files to Create/Modify**: - `backend/services/research/core/query_enhancer.py` (NEW) - `backend/api/research/router.py` (add endpoint) - `frontend/src/components/Research/steps/ResearchInput.tsx` (add button) **2. Research Persona Presets Display** (Medium Priority) - **Impact**: Shows personalized presets from research persona - **Effort**: Low (1 day) - **Dependencies**: βœ… Research persona available - **Files to Modify**: - `frontend/src/components/Research/steps/ResearchInput.tsx` (display presets) - Use `research_persona.recommended_presets` field ### Priority 2: Enhanced Filtering **3. Date Range & Source Type Filtering** (Medium Priority) - **Impact**: Better control over research scope - **Effort**: Medium (2 days) - **Dependencies**: None - **Files to Modify**: - `backend/services/research/core/research_context.py` (add fields) - `backend/services/research/core/research_engine.py` (pass to providers) - `frontend/src/components/Research/steps/ResearchInput.tsx` (add UI) ### Priority 3: Advanced Features **4. Smart Preset Generation** (Low Priority) - **Impact**: AI-generated presets based on research history - **Effort**: High (3-4 days) - **Dependencies**: Research history tracking - **Files to Create/Modify**: - `backend/services/research/core/preset_generator.py` (NEW) - Research history tracking service (NEW) --- ## πŸ” Known Issues & Limitations ### 1. Persona Defaults Timing - **Issue**: Persona defaults only apply if fields are "General" - **Impact**: If localStorage has saved state, defaults may not apply - **Workaround**: Clear localStorage or manually reset to "General" - **Future Fix**: Add "Reset to Persona Defaults" button ### 2. Domain Suggestions Provider-Specific - **Issue**: Domain suggestions only auto-populate for Exa - **Impact**: Tavily domains need manual entry - **Future Fix**: Auto-populate for both providers ### 3. Research Persona Cache - **Issue**: Persona only loaded if cached (7-day TTL) - **Impact**: New users or expired cache won't get persona benefits - **Workaround**: Persona generation happens during onboarding or scheduled task - **Future Fix**: Auto-generate on-demand if cache expired ### 4. Query Enhancement Not Available - **Issue**: No way to enhance vague queries - **Impact**: Users must manually refine queries - **Future Fix**: Implement AI query enhancement (Phase 2) --- ## πŸ“ˆ Success Metrics ### Phase 1 Goals (Current) - βœ… Persona defaults auto-apply for onboarded users - βœ… Research persona enriches backend research - βœ… Exa preferred for all research modes - βœ… Provider status clearly visible ### Phase 2 Goals (Next) - ⏳ AI query enhancement reduces query refinement time - ⏳ Smart presets increase research efficiency - ⏳ Date range filtering improves result relevance --- ## 🎯 Recommendations for Testing 1. **Test with Real User Accounts**: - New user (no onboarding) - User with completed onboarding - User with research persona generated 2. **Test Provider Scenarios**: - All providers available - Only Exa available - Only Tavily available - Only Google available 3. **Test Persona Integration**: - Verify persona defaults apply on wizard load - Verify backend persona enrichment works - Check backend logs for persona application 4. **Test Edge Cases**: - localStorage with saved state - Network errors during config fetch - Missing research persona - Provider API failures --- ## πŸ“ Summary **Phase 1 Implementation**: βœ… **COMPLETE** **Key Achievements**: - Persona-aware defaults integrated (frontend + backend) - Research persona enriches research context - Exa-first provider selection for all modes - Visual status indicators working correctly - Domain suggestions auto-populate **Ready for Testing**: βœ… Yes **Next Steps**: 1. End-user testing (current focus) 2. Phase 2: AI Query Enhancement 3. Phase 2: Research Persona Presets Display 4. Phase 2: Date Range & Source Type Filtering --- ## πŸš€ Phase 2 Implementation Plan (User-Clarified Requirements) ### Understanding the Flow ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ USER JOURNEY β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 1. User signs up β†’ MUST complete onboarding (mandatory) β”‚ β”‚ └── Creates: Core Persona, Blog Persona, (opt) Social Personas β”‚ β”‚ β”‚ β”‚ 2. User accesses Dashboard/Tools (only after onboarding) β”‚ β”‚ β”‚ β”‚ 3. User visits Researcher (first time) β”‚ β”‚ └── Research Persona does NOT exist yet β”‚ β”‚ └── System GENERATES Research Persona from Core Persona β”‚ β”‚ └── Stores in onboarding database β”‚ β”‚ β”‚ β”‚ 4. User visits Researcher (subsequent times) β”‚ β”‚ └── Research Persona loaded from cache/database β”‚ β”‚ └── NO fallback to "General" - always use persona β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ### Key User Requirements 1. **Onboarding is mandatory** - Users cannot access tools without completing onboarding 2. **Core persona always exists** - After onboarding, core persona + blog persona are guaranteed 3. **Research persona generated on first use** - NOT during onboarding 4. **Never fallback to "General"** - Always use persona data for hyper-personalization 5. **Pre-fill Exa/Tavily options** - Make research easier for non-technical users 6. **AI analysis personalized** - Use persona to customize research result presentation --- ### Phase 2 Changes Required #### 1. Backend - Generate Research Persona on First Visit **File**: `backend/services/research/core/research_engine.py` **Current Code (Phase 1)**: ```python persona = persona_service.get_cached_only(user_id) # Never generates ``` **Phase 2 Change**: ```python persona = persona_service.get_or_generate(user_id) # Generates if missing ``` **Impact**: - First-time users get research persona generated automatically - Subsequent users get cached persona (7-day TTL) - LLM API call cost on first research execution --- #### 2. Backend - `/api/research/persona-defaults` Enhancement **File**: `backend/api/research_config.py` **Current Behavior**: - Uses core persona from onboarding - Falls back to "General" if not found **Phase 2 Change**: 1. Check if research persona exists 2. If yes β†’ Use research persona fields 3. If no β†’ Use core persona fields (never "General") 4. Optionally trigger research persona generation in background **Why**: Research persona has better defaults (suggested_exa_domains, suggested_exa_category, research_angles) than core persona. --- #### 3. Frontend - Ensure Persona Always Loaded **File**: `frontend/src/components/Research/steps/ResearchInput.tsx` **Current Behavior**: - Applies persona defaults if fields are "General" - Falls back to "General" if persona API fails **Phase 2 Change**: 1. Remove fallback to "General" 2. Show loading state until persona is loaded 3. If persona fails, show error with retry option 4. Never proceed with "General" values --- #### 4. Frontend - First Visit Detection **File**: `frontend/src/components/Research/ResearchWizard.tsx` or `useResearchWizard.ts` **Phase 2 Addition**: 1. Check if research persona exists on mount 2. If not β†’ Show "Generating your personalized research settings..." loading state 3. Call `/api/research/research-persona` to trigger generation 4. Once complete β†’ Load persona defaults into wizard --- #### 5. Remove All "General" Fallbacks **Files to Update**: - `ResearchInput.tsx` - Remove "General" default values - `useResearchWizard.ts` - Remove "General" from `defaultState` - `researchConfig.ts` - Remove empty fallback for `PersonaDefaults` - `research_engine.py` - Remove context creation without personalization **Why**: User explicitly stated "no fallback to General" - always use persona data. --- ### Implementation Order #### Step 1: Backend - Enable Research Persona Generation on First Use ``` File: backend/services/research/core/research_engine.py Change: get_cached_only() β†’ get_or_generate() Risk: LLM API cost on first research Mitigation: Rate limiting already in place ``` #### Step 2: Backend - Enhance Persona Defaults Endpoint ``` File: backend/api/research_config.py Change: Use research persona fields if available Why: Research persona has richer defaults ``` #### Step 3: Frontend - First Visit Research Persona Generation Flow ``` Files: ResearchWizard.tsx, useResearchWizard.ts Change: Add generation flow for first-time users UX: Show friendly loading state during generation ``` #### Step 4: Remove "General" Fallbacks ``` Files: Multiple frontend and backend files Change: Replace "General" with persona-derived values Why: Hyper-personalization requirement ``` #### Step 5: Pre-fill Advanced Exa/Tavily Options ``` Files: ResearchInput.tsx, ExaOptions.tsx, TavilyOptions.tsx Change: Auto-populate from research persona Why: Simplify UI for non-technical users ``` --- ### Testing Checklist for Phase 2 #### Test Scenario 1: First-Time Researcher User - [ ] User completes onboarding (has core persona, blog persona) - [ ] User visits Researcher for first time - [ ] Shows "Generating personalized research settings..." loading - [ ] Research persona is generated (check backend logs) - [ ] Wizard fields auto-populate with persona data (NOT "General") - [ ] Execute research β†’ verify persona enrichment in backend #### Test Scenario 2: Returning Researcher User - [ ] User with existing research persona visits Researcher - [ ] Persona loaded from cache (no generation) - [ ] Wizard fields auto-populate correctly - [ ] Execute research β†’ verify cached persona used #### Test Scenario 3: Expired Cache - [ ] User with expired research persona (>7 days) visits Researcher - [ ] Persona is regenerated (check backend logs) - [ ] New persona used for research #### Test Scenario 4: No "General" Values - [ ] Verify industry is never "General" - [ ] Verify target audience is never "General" - [ ] Verify Exa domains/category are always populated - [ ] Verify Tavily options are pre-filled --- ### API Flow Diagram ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ PHASE 2 API FLOW β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”‚ β”‚ User Opens Researcher β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ GET /api/research/persona-defaults β”‚ β”‚ β”‚ β”‚ + GET /api/research/providers/status β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Backend checks research persona β”‚ β”‚ β”‚ β”‚ exists in cache/database? β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β” β”‚ β”‚ YES NO β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚Returnβ”‚ β”‚ Generate research persona β”‚ β”‚ β”‚ β”‚cachedβ”‚ β”‚ from core persona (LLM) β”‚ β”‚ β”‚ β”‚data β”‚ β”‚ Save to database β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”˜ β”‚ Return generated data β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Frontend receives persona defaults β”‚ β”‚ β”‚ β”‚ (industry, audience, domains, etc.) β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Auto-populate wizard fields β”‚ β”‚ β”‚ β”‚ (NO "General" values) β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ User Executes Research β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ POST /api/research/start β”‚ β”‚ β”‚ β”‚ (ResearchEngine.research()) β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Backend enriches context with β”‚ β”‚ β”‚ β”‚ research persona (cached) β”‚ β”‚ β”‚ β”‚ β†’ AI optimizes Exa/Tavily params β”‚ β”‚ β”‚ β”‚ β†’ Executes research β”‚ β”‚ β”‚ β”‚ β†’ AI analyzes results (personalized)β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Return personalized research resultsβ”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` --- ### Benefits of Phase 2 1. **Zero Configuration for Users**: Research works out-of-box with personalized settings 2. **Hyper-Personalization**: Every research is tailored to user's industry and audience 3. **No Technical Complexity**: Exa/Tavily options pre-filled, hidden from users 4. **Consistent Experience**: No "General" fallbacks - always meaningful defaults 5. **AI-Optimized Results**: Research output digestible and relevant to user's needs --- **Document Version**: 1.1 **Last Updated**: 2025-01-29 **Phase 2 Status**: Ready for Implementation