# HunyuanVideo-1.5 Text-to-Video Implementation - Complete ✅ ## Summary Successfully implemented HunyuanVideo-1.5 text-to-video generation with modular architecture, following separation of concerns principles. ## Implementation Details ### 1. Service Structure ✅ **File**: `backend/services/llm_providers/video_generation/wavespeed_provider.py` - **`HunyuanVideoService`**: Complete implementation - Model-specific validation (duration: 5, 8, or 10 seconds, resolution: 480p or 720p) - Based on official API docs: https://wavespeed.ai/docs/docs-api/wavespeed-ai/hunyuan-video-1.5-text-to-video - Size format conversion (resolution + aspect_ratio → "width*height") - Cost calculation ($0.02/s for 480p, $0.04/s for 720p) - Full API integration (submit → poll → download) - Progress callback support - Comprehensive error handling ### 2. Unified Entry Point Integration ✅ **File**: `backend/services/llm_providers/main_video_generation.py` - **`_generate_text_to_video_wavespeed()`**: New async function - Routes to appropriate service based on model - Handles all parameters - Returns standardized metadata dict - **`ai_video_generate()`**: Updated - Now supports WaveSpeed text-to-video - Default model: `hunyuan-video-1.5` - Async/await properly handled ### 3. API Integration ✅ **Model**: `wavespeed-ai/hunyuan-video-1.5/text-to-video` **Parameters Supported**: - ✅ `prompt` (required) - ✅ `negative_prompt` (optional) - ✅ `size` (auto-calculated from resolution + aspect_ratio) - ✅ `duration` (5, 8, or 10 seconds) - ✅ `seed` (optional, default: -1) **Workflow**: 1. ✅ Submit request to WaveSpeed API 2. ✅ Get prediction ID 3. ✅ Poll `/api/v3/predictions/{id}/result` with progress callbacks 4. ✅ Download video from `outputs[0]` 5. ✅ Return metadata dict ### 4. Features ✅ - ✅ **Pre-flight validation**: Subscription limits checked before API calls - ✅ **Usage tracking**: Integrated with existing tracking system - ✅ **Progress callbacks**: Real-time progress updates (10% → 20-80% → 90% → 100%) - ✅ **Error handling**: Comprehensive error messages with prediction_id for resume - ✅ **Cost calculation**: Accurate pricing ($0.02/s 480p, $0.04/s 720p) - ✅ **Metadata return**: Full metadata including dimensions, cost, prediction_id ### 5. Size Format Mapping ✅ **Resolution → Size Format**: - `480p` + `16:9` → `"832*480"` (landscape) - `480p` + `9:16` → `"480*832"` (portrait) - `720p` + `16:9` → `"1280*720"` (landscape) - `720p` + `9:16` → `"720*1280"` (portrait) ### 6. Validation ✅ **HunyuanVideo-1.5 Specific**: - Duration: Must be 5, 8, or 10 seconds (per official API docs) - Resolution: Must be 480p or 720p (not 1080p) - Prompt: Required and cannot be empty ## Code Structure ``` backend/services/llm_providers/ ├── main_video_generation.py # Unified entry point │ ├── ai_video_generate() # Main function (async) │ └── _generate_text_to_video_wavespeed() # WaveSpeed router │ └── video_generation/ # Modular services ├── base.py # Base classes └── wavespeed_provider.py # WaveSpeed services ├── BaseWaveSpeedTextToVideoService # Base class ├── HunyuanVideoService # ✅ Implemented └── get_wavespeed_text_to_video_service() # Factory ``` ## Usage Example ```python from services.llm_providers.main_video_generation import ai_video_generate result = await ai_video_generate( prompt="A tiny robot hiking across a kitchen table", operation_type="text-to-video", provider="wavespeed", model="hunyuan-video-1.5", duration=5, resolution="720p", user_id="user123", progress_callback=lambda progress, msg: print(f"{progress}%: {msg}") ) video_bytes = result["video_bytes"] cost = result["cost"] # $0.20 for 5s @ 720p ``` ## Testing Checklist - [ ] Test with valid prompt - [ ] Test with 5-second duration - [ ] Test with 8-second duration - [ ] Test with 10-second duration - [ ] Test with 480p resolution - [ ] Test with 720p resolution - [ ] Test with negative_prompt - [ ] Test with seed - [ ] Test progress callbacks - [ ] Test error handling (invalid duration) - [ ] Test error handling (invalid resolution) - [ ] Test cost calculation - [ ] Test metadata return ## Next Steps 1. ✅ **HunyuanVideo-1.5**: Complete 2. ⏳ **LTX-2 Pro**: Pending documentation 3. ⏳ **LTX-2 Fast**: Pending documentation 4. ⏳ **LTX-2 Retake**: Pending documentation ## Notes - **Audio support**: Not supported by HunyuanVideo-1.5 (ignored with warning) - **Prompt expansion**: Not supported by HunyuanVideo-1.5 (ignored with warning) - **Aspect ratio**: Used for size calculation (landscape vs portrait) - **Polling interval**: 0.5 seconds (as per example code) - **Timeout**: 10 minutes maximum ## Ready for Testing ✅ The implementation is complete and ready for testing. All features are implemented following the modular architecture with separation of concerns.