Files
Kunthawat Greethong c35fa52117 Base code
2026-01-08 22:39:53 +07:00

361 lines
12 KiB
Python

from __future__ import annotations
import base64
import json
from typing import Any, Dict, Optional
import requests
from fastapi import HTTPException
from services.llm_providers.main_text_generation import llm_text_gen
from utils.logger_utils import get_service_logger
from .client import WaveSpeedClient
try:
import imghdr
except ModuleNotFoundError: # Python 3.13 removed imghdr
imghdr = None
logger = get_service_logger("wavespeed.kling_animation")
KLING_MODEL_PATH = "kwaivgi/kling-v2.5-turbo-std/image-to-video"
KLING_MODEL_5S = "kling-v2.5-turbo-std-5s"
KLING_MODEL_10S = "kling-v2.5-turbo-std-10s"
MAX_IMAGE_BYTES = 10 * 1024 * 1024 # 10 MB limit per docs
def _detect_image_mime(image_bytes: bytes) -> str:
if imghdr:
detected = imghdr.what(None, h=image_bytes)
if detected == "jpeg":
return "image/jpeg"
if detected == "png":
return "image/png"
if detected == "gif":
return "image/gif"
header = image_bytes[:8]
if header.startswith(b"\x89PNG"):
return "image/png"
if header[:2] == b"\xff\xd8":
return "image/jpeg"
if header[:3] in (b"GIF", b"GIF"):
return "image/gif"
return "image/png"
def _build_fallback_prompt(scene_data: Dict[str, Any], story_context: Dict[str, Any]) -> str:
title = (scene_data.get("title") or "Scene").strip()
description = (scene_data.get("description") or "").strip()
image_prompt = (scene_data.get("image_prompt") or "").strip()
tone = (story_context.get("story_tone") or "story").strip()
setting = (story_context.get("story_setting") or "the scene").strip()
parts = [
f"{title} cinematic motion shot.",
description[:220] if description else "",
f"Camera glides with subtle parallax over {setting}.",
f"Maintain a {tone} mood with natural lighting accents.",
f"Honor the original illustration details: {image_prompt[:200]}." if image_prompt else "",
"5-second sequence, gentle push-in, flowing cloth and atmospheric particles.",
]
fallback_prompt = " ".join(filter(None, parts))
return fallback_prompt.strip()
def _load_llm_json_response(response_text: Any) -> Dict[str, Any]:
"""Normalize responses from llm_text_gen (dict or JSON string)."""
if isinstance(response_text, dict):
return response_text
if isinstance(response_text, str):
return json.loads(response_text)
raise ValueError(f"Unexpected response type: {type(response_text)}")
def _generate_text_prompt(
*,
prompt: str,
system_prompt: str,
user_id: str,
fallback_prompt: str,
) -> str:
"""Fallback text generation when structured JSON parsing fails."""
try:
response = llm_text_gen(
prompt=prompt.strip(),
system_prompt=system_prompt,
user_id=user_id,
)
except HTTPException as exc:
if exc.status_code == 429:
raise
logger.warning(
"[AnimateScene] Text-mode prompt generation failed (%s). Using deterministic fallback.",
exc.detail,
)
return fallback_prompt
except Exception as exc:
logger.error(
"[AnimateScene] Unexpected error generating text prompt: %s",
exc,
exc_info=True,
)
return fallback_prompt
if isinstance(response, dict):
candidates = [
response.get("animation_prompt"),
response.get("prompt"),
response.get("text"),
]
for candidate in candidates:
if isinstance(candidate, str) and candidate.strip():
return candidate.strip()
# As a last resort, stringify the dict
response_text = json.dumps(response, ensure_ascii=False)
else:
response_text = str(response)
cleaned = response_text.strip()
return cleaned or fallback_prompt
def generate_animation_prompt(
scene_data: Dict[str, Any],
story_context: Dict[str, Any],
user_id: str,
) -> str:
"""
Generate an animation-focused prompt using llm_text_gen, falling back to a deterministic prompt if LLM fails.
"""
fallback_prompt = _build_fallback_prompt(scene_data, story_context)
system_prompt = (
"You are an expert cinematic animation director. "
"You transform static illustrated scenes into short cinematic motion clips. "
"Describe motion, camera behavior, atmosphere, and pacing."
)
description = scene_data.get("description", "")
image_prompt = scene_data.get("image_prompt", "")
title = scene_data.get("title", "")
tone = story_context.get("story_tone") or story_context.get("story_tone", "")
setting = story_context.get("story_setting") or story_context.get("story_setting", "")
prompt = f"""
Create a concise animation prompt (2-3 sentences) for a 5-second cinematic clip.
Scene Title: {title}
Description: {description}
Existing Image Prompt: {image_prompt}
Story Tone: {tone}
Setting: {setting}
Focus on:
- Motion of characters/objects
- Camera movement (pan, zoom, dolly, orbit)
- Atmosphere, lighting, and emotion
- Timing cues appropriate for a {tone or "story"} scene
Respond with JSON: {{"animation_prompt": "<prompt>"}}
"""
try:
response = llm_text_gen(
prompt=prompt.strip(),
system_prompt=system_prompt,
user_id=user_id,
json_struct={
"type": "object",
"properties": {
"animation_prompt": {
"type": "string",
"description": "A cinematic motion prompt for the WaveSpeed image-to-video model.",
}
},
"required": ["animation_prompt"],
},
)
structured = _load_llm_json_response(response)
animation_prompt = structured.get("animation_prompt")
if not animation_prompt or not isinstance(animation_prompt, str):
raise ValueError("Missing animation_prompt in structured response")
cleaned_prompt = animation_prompt.strip()
if not cleaned_prompt:
raise ValueError("animation_prompt is empty after trimming")
return cleaned_prompt
except HTTPException as exc:
if exc.status_code == 429:
raise
logger.warning(
"[AnimateScene] Structured LLM prompt generation failed (%s). Falling back to text parsing.",
exc.detail,
)
return _generate_text_prompt(
prompt=prompt,
system_prompt=system_prompt,
user_id=user_id,
fallback_prompt=fallback_prompt,
)
except (json.JSONDecodeError, ValueError, KeyError) as exc:
logger.warning(
"[AnimateScene] Failed to parse structured animation prompt (%s). Falling back to text parsing.",
exc,
)
return _generate_text_prompt(
prompt=prompt,
system_prompt=system_prompt,
user_id=user_id,
fallback_prompt=fallback_prompt,
)
except Exception as exc:
logger.error(
"[AnimateScene] Unexpected error generating animation prompt: %s",
exc,
exc_info=True,
)
return fallback_prompt
def animate_scene_image(
*,
image_bytes: bytes,
scene_data: Dict[str, Any],
story_context: Dict[str, Any],
user_id: str,
duration: int = 5,
guidance_scale: float = 0.5,
negative_prompt: Optional[str] = None,
client: Optional[WaveSpeedClient] = None,
) -> Dict[str, Any]:
"""
Animate a scene image using WaveSpeed Kling v2.5 Turbo Std.
Returns dict with video bytes, prompt used, model name, duration, and cost.
"""
if duration not in (5, 10):
raise HTTPException(status_code=400, detail="Duration must be 5 or 10 seconds for scene animation.")
if len(image_bytes) > MAX_IMAGE_BYTES:
raise HTTPException(
status_code=400,
detail="Scene image exceeds 10MB limit required by WaveSpeed."
)
guidance_scale = max(0.0, min(1.0, guidance_scale))
animation_prompt = generate_animation_prompt(scene_data, story_context, user_id)
image_b64 = base64.b64encode(image_bytes).decode("utf-8")
payload = {
"duration": duration,
"guidance_scale": guidance_scale,
"image": image_b64,
"prompt": animation_prompt,
}
if negative_prompt:
payload["negative_prompt"] = negative_prompt.strip()
client = client or WaveSpeedClient()
prediction_id = client.submit_image_to_video(KLING_MODEL_PATH, payload)
try:
result = client.poll_until_complete(prediction_id, timeout_seconds=240, interval_seconds=1.0)
except HTTPException as exc:
detail = exc.detail or {}
if isinstance(detail, dict):
detail.setdefault("prediction_id", prediction_id)
detail.setdefault("resume_available", True)
detail.setdefault("message", "WaveSpeed request is still processing. Use resume endpoint to fetch the video once ready.")
raise HTTPException(status_code=exc.status_code, detail=detail)
outputs = result.get("outputs") or []
if not outputs:
raise HTTPException(status_code=502, detail="WaveSpeed completed but returned no outputs.")
video_url = outputs[0]
video_response = requests.get(video_url, timeout=60)
if video_response.status_code != 200:
raise HTTPException(
status_code=502,
detail={
"error": "Failed to download animation video",
"status_code": video_response.status_code,
"response": video_response.text[:200],
},
)
model_name = KLING_MODEL_5S if duration == 5 else KLING_MODEL_10S
cost = 0.21 if duration == 5 else 0.42
return {
"video_bytes": video_response.content,
"prompt": animation_prompt,
"duration": duration,
"model_name": model_name,
"cost": cost,
"provider": "wavespeed",
"source_video_url": video_url,
"prediction_id": prediction_id,
}
def resume_scene_animation(
*,
prediction_id: str,
duration: int,
user_id: str,
client: Optional[WaveSpeedClient] = None,
) -> Dict[str, Any]:
"""
Resume a previously submitted animation by fetching the completed result.
"""
if duration not in (5, 10):
raise HTTPException(status_code=400, detail="Duration must be 5 or 10 seconds for scene animation.")
client = client or WaveSpeedClient()
result = client.get_prediction_result(prediction_id, timeout=120)
status = result.get("status")
if status != "completed":
raise HTTPException(
status_code=409,
detail={
"error": "WaveSpeed prediction is not completed yet",
"prediction_id": prediction_id,
"status": status,
},
)
outputs = result.get("outputs") or []
if not outputs:
raise HTTPException(status_code=502, detail="WaveSpeed completed but returned no outputs.")
video_url = outputs[0]
video_response = requests.get(video_url, timeout=120)
if video_response.status_code != 200:
raise HTTPException(
status_code=502,
detail={
"error": "Failed to download animation video during resume",
"status_code": video_response.status_code,
"response": video_response.text[:200],
"prediction_id": prediction_id,
},
)
animation_prompt = result.get("prompt") or ""
model_name = KLING_MODEL_5S if duration == 5 else KLING_MODEL_10S
cost = 0.21 if duration == 5 else 0.42
logger.info("[AnimateScene] Resumed download for prediction=%s", prediction_id)
return {
"video_bytes": video_response.content,
"prompt": animation_prompt,
"duration": duration,
"model_name": model_name,
"cost": cost,
"provider": "wavespeed",
"source_video_url": video_url,
"prediction_id": prediction_id,
}