Files
moreminimore-marketing/backend/models/research_persona_models.py
Kunthawat Greethong c35fa52117 Base code
2026-01-08 22:39:53 +07:00

156 lines
6.1 KiB
Python

"""
Research Persona Models
Pydantic models for AI-generated research personas.
"""
from typing import Dict, Any, List, Optional
from pydantic import BaseModel, Field
from datetime import datetime
class ResearchPreset(BaseModel):
"""Research preset configuration."""
name: str
keywords: str
industry: str
target_audience: str
research_mode: str = Field(..., description="basic, comprehensive, or targeted")
config: Dict[str, Any] = Field(default_factory=dict, description="Complete ResearchConfig object")
description: Optional[str] = None
icon: Optional[str] = None
gradient: Optional[str] = None
class ResearchPersona(BaseModel):
"""AI-generated research persona providing personalized defaults and suggestions."""
# Smart Defaults
default_industry: str = Field(..., description="Default industry from onboarding data")
default_target_audience: str = Field(..., description="Default target audience from onboarding data")
default_research_mode: str = Field(..., description="basic, comprehensive, or targeted")
default_provider: str = Field(..., description="google or exa")
# Keyword Intelligence
suggested_keywords: List[str] = Field(default_factory=list, description="8-12 relevant keywords")
keyword_expansion_patterns: Dict[str, List[str]] = Field(
default_factory=dict,
description="Mapping of keywords to expanded, industry-specific terms"
)
# Domain & Source Intelligence
suggested_exa_domains: List[str] = Field(
default_factory=list,
description="4-6 authoritative domains for the industry"
)
suggested_exa_category: Optional[str] = Field(
None,
description="Suggested Exa category based on industry"
)
suggested_exa_search_type: Optional[str] = Field(
None,
description="Suggested Exa search algorithm: auto, neural, keyword, fast, deep"
)
# Tavily Provider Intelligence
suggested_tavily_topic: Optional[str] = Field(
None,
description="Suggested Tavily topic: general, news, finance"
)
suggested_tavily_search_depth: Optional[str] = Field(
None,
description="Suggested Tavily search depth: basic, advanced, fast, ultra-fast"
)
suggested_tavily_include_answer: Optional[str] = Field(
None,
description="Suggested Tavily answer type: false, basic, advanced"
)
suggested_tavily_time_range: Optional[str] = Field(
None,
description="Suggested Tavily time range: day, week, month, year"
)
suggested_tavily_raw_content_format: Optional[str] = Field(
None,
description="Suggested Tavily raw content format: false, markdown, text"
)
# Provider Selection Logic
provider_recommendations: Dict[str, str] = Field(
default_factory=dict,
description="Provider recommendations by use case: {'trends': 'tavily', 'deep_research': 'exa', 'factual': 'google'}"
)
# Query Enhancement Intelligence
research_angles: List[str] = Field(
default_factory=list,
description="5-8 alternative research angles/focuses"
)
query_enhancement_rules: Dict[str, str] = Field(
default_factory=dict,
description="Templates for improving vague user queries"
)
# Research History Insights
recommended_presets: List[ResearchPreset] = Field(
default_factory=list,
description="3-5 personalized research preset templates"
)
# Research Preferences
research_preferences: Dict[str, Any] = Field(
default_factory=dict,
description="Structured research preferences from onboarding"
)
# Metadata
generated_at: Optional[str] = Field(None, description="ISO timestamp of generation")
confidence_score: Optional[float] = Field(None, ge=0.0, le=1.0, description="Confidence score 0-1")
version: Optional[str] = Field(None, description="Schema version")
class Config:
json_schema_extra = {
"example": {
"default_industry": "Healthcare",
"default_target_audience": "Medical professionals and healthcare administrators",
"default_research_mode": "comprehensive",
"default_provider": "exa",
"suggested_keywords": ["telemedicine", "patient care", "healthcare technology"],
"keyword_expansion_patterns": {
"AI": ["healthcare AI", "medical AI", "clinical AI"],
"tools": ["medical devices", "clinical tools"]
},
"suggested_exa_domains": ["pubmed.gov", "nejm.org", "thelancet.com"],
"suggested_exa_category": "research paper",
"suggested_exa_search_type": "neural",
"suggested_tavily_topic": "news",
"suggested_tavily_search_depth": "advanced",
"suggested_tavily_include_answer": "advanced",
"suggested_tavily_time_range": "month",
"suggested_tavily_raw_content_format": "markdown",
"provider_recommendations": {
"trends": "tavily",
"deep_research": "exa",
"factual": "google",
"news": "tavily",
"academic": "exa"
},
"research_angles": [
"Compare telemedicine platforms",
"Telemedicine ROI analysis",
"Latest telemedicine trends"
],
"query_enhancement_rules": {
"vague_ai": "Research: AI applications in Healthcare for Medical professionals",
"vague_tools": "Compare top Healthcare tools"
},
"recommended_presets": [],
"research_preferences": {
"research_depth": "comprehensive",
"content_types": ["blog", "article"]
},
"generated_at": "2024-01-01T00:00:00Z",
"confidence_score": 0.85,
"version": "1.0"
}
}