Files
moreminimore-marketing/backend/services/onboarding
Kunthawat Greethong c35fa52117 Base code
2026-01-08 22:39:53 +07:00
..
2026-01-08 22:39:53 +07:00
2026-01-08 22:39:53 +07:00
2026-01-08 22:39:53 +07:00
2026-01-08 22:39:53 +07:00
2026-01-08 22:39:53 +07:00
2026-01-08 22:39:53 +07:00

Onboarding Services Package

This package contains all onboarding-related services and utilities for ALwrity. All onboarding data is stored in the database with proper user isolation, replacing the previous file-based JSON storage system.

Architecture

Database-First Design

  • Primary Storage: PostgreSQL database with proper foreign keys and relationships
  • User Isolation: Each user's onboarding data is completely separate
  • No File Storage: Removed all JSON file operations for production scalability
  • Local Development: API keys still written to .env for developer convenience

Service Structure

backend/services/onboarding/
├── __init__.py                      # Package exports
├── database_service.py              # Core database operations
├── progress_service.py              # Progress tracking and step management
├── data_service.py                  # Data validation and processing
├── api_key_manager.py               # API key management + progress tracking
└── README.md                        # This documentation

Services

1. OnboardingDatabaseService (database_service.py)

Purpose: Core database operations for onboarding data with user isolation.

Key Features:

  • User-specific session management
  • API key storage and retrieval
  • Website analysis persistence
  • Research preferences management
  • Persona data storage
  • Brand analysis support (feature-flagged)

Main Methods:

  • get_or_create_session(user_id) - Get or create user session
  • save_api_key(user_id, provider, key) - Store API keys
  • save_website_analysis(user_id, data) - Store website analysis
  • save_research_preferences(user_id, prefs) - Store research settings
  • save_persona_data(user_id, data) - Store persona information

2. OnboardingProgressService (progress_service.py)

Purpose: High-level progress tracking and step management.

Key Features:

  • Database-only progress tracking
  • Step completion validation
  • Progress percentage calculation
  • Onboarding completion management

Main Methods:

  • get_onboarding_status(user_id) - Get current status
  • update_step(user_id, step_number) - Update current step
  • update_progress(user_id, percentage) - Update progress
  • complete_onboarding(user_id) - Mark as complete

3. OnboardingDataService (data_service.py)

Purpose: Extract and use onboarding data for AI personalization.

Key Features:

  • Personalized AI input generation
  • Website analysis data extraction
  • Research preferences integration
  • Default fallback data

Main Methods:

  • get_personalized_ai_inputs(user_id) - Generate personalized inputs
  • get_user_website_analysis(user_id) - Get website data
  • get_user_research_preferences(user_id) - Get research settings

4. OnboardingProgress + APIKeyManager (api_key_manager.py)

Purpose: Combined API key management and progress tracking with database persistence.

Key Features:

  • Database-only progress persistence (no JSON files)
  • API key management with environment integration
  • Step-by-step progress tracking
  • User-specific progress instances

Main Classes:

  • OnboardingProgress - Progress tracking with database persistence
  • APIKeyManager - API key management
  • StepData - Individual step data structure
  • StepStatus - Step status enumeration

Database Schema

Core Tables

  • onboarding_sessions - User session tracking
  • api_keys - User-specific API key storage
  • website_analyses - Website analysis data
  • research_preferences - User research settings
  • persona_data - Generated persona information

Relationships

  • All data tables reference onboarding_sessions.id
  • User isolation via user_id foreign key
  • Proper cascade deletion and updates

Usage Examples

Basic Progress Tracking

from services.onboarding import OnboardingProgress

# Get user-specific progress
progress = OnboardingProgress(user_id="user123")

# Mark step as completed
progress.mark_step_completed(1, {"api_keys": {"openai": "sk-..."}})

# Get progress summary
summary = progress.get_progress_summary()

Database Operations

from services.onboarding import OnboardingDatabaseService
from services.database import SessionLocal

db = SessionLocal()
service = OnboardingDatabaseService(db)

# Save API key
service.save_api_key("user123", "openai", "sk-...")

# Get website analysis
analysis = service.get_website_analysis("user123", db)

Progress Service

from services.onboarding import OnboardingProgressService

service = OnboardingProgressService()

# Get status
status = service.get_onboarding_status("user123")

# Update progress
service.update_step("user123", 2)
service.update_progress("user123", 50.0)

Migration from File-Based Storage

What Was Removed

  • JSON file operations (.onboarding_progress*.json)
  • File-based progress persistence
  • Dual persistence system (file + database)

What Was Kept

  • Database persistence (enhanced)
  • Local development .env API key writing
  • All existing functionality and APIs

Benefits

  • Production Ready: No ephemeral file storage
  • Scalable: Database-backed with proper indexing
  • User Isolated: Complete data separation
  • Maintainable: Single source of truth

Environment Variables

Required

  • Database connection (via services.database)
  • User authentication system

Optional

  • ENABLE_WEBSITE_BRAND_COLUMNS=true - Enable brand analysis features
  • DEPLOY_ENV=local - Enable local .env API key writing

Error Handling

All services include comprehensive error handling:

  • Database connection failures
  • User not found scenarios
  • Invalid data validation
  • Graceful fallbacks to defaults

Performance Considerations

  • Database queries are optimized with proper indexing
  • User-specific caching where appropriate
  • Minimal database calls through efficient service design
  • Connection pooling via SQLAlchemy

Testing

Each service can be tested independently:

  • Unit tests for individual methods
  • Integration tests with database
  • Mock database sessions for isolated testing

Future Enhancements

  • Real-time progress updates via WebSocket
  • Progress analytics and reporting
  • Bulk user operations
  • Advanced validation rules
  • Progress recovery mechanisms