Base code
This commit is contained in:
702
backend/services/hallucination_detector.py
Normal file
702
backend/services/hallucination_detector.py
Normal file
@@ -0,0 +1,702 @@
|
||||
"""
|
||||
Hallucination Detector Service
|
||||
|
||||
This service implements fact-checking functionality using Exa.ai API
|
||||
to detect and verify claims in AI-generated content, similar to the
|
||||
Exa.ai demo implementation.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import List, Dict, Any, Optional
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
import requests
|
||||
import os
|
||||
import asyncio
|
||||
import concurrent.futures
|
||||
try:
|
||||
from google import genai
|
||||
GOOGLE_GENAI_AVAILABLE = True
|
||||
except Exception:
|
||||
GOOGLE_GENAI_AVAILABLE = False
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@dataclass
|
||||
class Claim:
|
||||
"""Represents a single verifiable claim extracted from text."""
|
||||
text: str
|
||||
confidence: float
|
||||
assessment: str # "supported", "refuted", "insufficient_information"
|
||||
supporting_sources: List[Dict[str, Any]]
|
||||
refuting_sources: List[Dict[str, Any]]
|
||||
reasoning: str = ""
|
||||
|
||||
@dataclass
|
||||
class HallucinationResult:
|
||||
"""Result of hallucination detection analysis."""
|
||||
claims: List[Claim]
|
||||
overall_confidence: float
|
||||
total_claims: int
|
||||
supported_claims: int
|
||||
refuted_claims: int
|
||||
insufficient_claims: int
|
||||
timestamp: str
|
||||
|
||||
class HallucinationDetector:
|
||||
"""
|
||||
Hallucination detector using Exa.ai for fact-checking.
|
||||
|
||||
Implements the three-step process from Exa.ai demo:
|
||||
1. Extract verifiable claims from text
|
||||
2. Search for evidence using Exa.ai
|
||||
3. Verify claims against sources
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.exa_api_key = os.getenv('EXA_API_KEY')
|
||||
self.gemini_api_key = os.getenv('GEMINI_API_KEY')
|
||||
|
||||
if not self.exa_api_key:
|
||||
logger.warning("EXA_API_KEY not found. Hallucination detection will be limited.")
|
||||
|
||||
if not self.gemini_api_key:
|
||||
logger.warning("GEMINI_API_KEY not found. Falling back to heuristic claim extraction.")
|
||||
|
||||
# Initialize Gemini client for claim extraction and assessment
|
||||
self.gemini_client = genai.Client(api_key=self.gemini_api_key) if (GOOGLE_GENAI_AVAILABLE and self.gemini_api_key) else None
|
||||
|
||||
# Rate limiting to prevent API abuse
|
||||
self.daily_api_calls = 0
|
||||
self.daily_limit = 20 # Max 20 API calls per day for fact checking
|
||||
self.last_reset_date = None
|
||||
|
||||
def _check_rate_limit(self) -> bool:
|
||||
"""Check if we're within daily API usage limits."""
|
||||
from datetime import date
|
||||
|
||||
today = date.today()
|
||||
|
||||
# Reset counter if it's a new day
|
||||
if self.last_reset_date != today:
|
||||
self.daily_api_calls = 0
|
||||
self.last_reset_date = today
|
||||
|
||||
# Check if we've exceeded the limit
|
||||
if self.daily_api_calls >= self.daily_limit:
|
||||
logger.warning(f"Daily API limit reached ({self.daily_limit} calls). Fact checking disabled for today.")
|
||||
return False
|
||||
|
||||
# Increment counter for this API call
|
||||
self.daily_api_calls += 1
|
||||
logger.info(f"Fact check API call #{self.daily_api_calls}/{self.daily_limit} today")
|
||||
return True
|
||||
|
||||
async def detect_hallucinations(self, text: str) -> HallucinationResult:
|
||||
"""
|
||||
Main method to detect hallucinations in the given text.
|
||||
|
||||
Args:
|
||||
text: The text to analyze for factual accuracy
|
||||
|
||||
Returns:
|
||||
HallucinationResult with claims analysis and confidence scores
|
||||
"""
|
||||
try:
|
||||
logger.info(f"Starting hallucination detection for text of length: {len(text)}")
|
||||
logger.info(f"Text sample: {text[:200]}...")
|
||||
|
||||
# Check rate limits first
|
||||
if not self._check_rate_limit():
|
||||
return HallucinationResult(
|
||||
claims=[],
|
||||
overall_confidence=0.0,
|
||||
total_claims=0,
|
||||
supported_claims=0,
|
||||
refuted_claims=0,
|
||||
insufficient_claims=0,
|
||||
timestamp=datetime.now().isoformat()
|
||||
)
|
||||
|
||||
# Validate required API keys
|
||||
if not self.gemini_api_key:
|
||||
raise Exception("GEMINI_API_KEY not configured. Cannot perform hallucination detection.")
|
||||
if not self.exa_api_key:
|
||||
raise Exception("EXA_API_KEY not configured. Cannot search for evidence.")
|
||||
|
||||
# Step 1: Extract claims from text
|
||||
claims_texts = await self._extract_claims(text)
|
||||
logger.info(f"Extracted {len(claims_texts)} claims from text: {claims_texts}")
|
||||
|
||||
if not claims_texts:
|
||||
logger.warning("No verifiable claims found in text")
|
||||
return HallucinationResult(
|
||||
claims=[],
|
||||
overall_confidence=0.0,
|
||||
total_claims=0,
|
||||
supported_claims=0,
|
||||
refuted_claims=0,
|
||||
insufficient_claims=0,
|
||||
timestamp=datetime.now().isoformat()
|
||||
)
|
||||
|
||||
# Step 2 & 3: Verify claims in batch to reduce API calls
|
||||
verified_claims = await self._verify_claims_batch(claims_texts)
|
||||
|
||||
# Calculate overall metrics
|
||||
total_claims = len(verified_claims)
|
||||
supported_claims = sum(1 for c in verified_claims if c.assessment == "supported")
|
||||
refuted_claims = sum(1 for c in verified_claims if c.assessment == "refuted")
|
||||
insufficient_claims = sum(1 for c in verified_claims if c.assessment == "insufficient_information")
|
||||
|
||||
# Calculate overall confidence (weighted average)
|
||||
if total_claims > 0:
|
||||
overall_confidence = sum(c.confidence for c in verified_claims) / total_claims
|
||||
else:
|
||||
overall_confidence = 0.0
|
||||
|
||||
result = HallucinationResult(
|
||||
claims=verified_claims,
|
||||
overall_confidence=overall_confidence,
|
||||
total_claims=total_claims,
|
||||
supported_claims=supported_claims,
|
||||
refuted_claims=refuted_claims,
|
||||
insufficient_claims=insufficient_claims,
|
||||
timestamp=datetime.now().isoformat()
|
||||
)
|
||||
|
||||
logger.info(f"Hallucination detection completed. Overall confidence: {overall_confidence:.2f}")
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in hallucination detection: {str(e)}")
|
||||
raise Exception(f"Hallucination detection failed: {str(e)}")
|
||||
|
||||
async def _extract_claims(self, text: str) -> List[str]:
|
||||
"""
|
||||
Extract verifiable claims from text using LLM.
|
||||
|
||||
Args:
|
||||
text: Input text to extract claims from
|
||||
|
||||
Returns:
|
||||
List of claim strings
|
||||
"""
|
||||
if not self.gemini_client:
|
||||
raise Exception("Gemini client not available. Cannot extract claims without AI provider.")
|
||||
|
||||
try:
|
||||
prompt = (
|
||||
"Extract verifiable factual claims from the following text. "
|
||||
"A verifiable claim is a statement that can be checked against external sources for accuracy.\n\n"
|
||||
"Return ONLY a valid JSON array of strings, where each string is a single verifiable claim.\n\n"
|
||||
"Examples of GOOD verifiable claims:\n"
|
||||
"- \"The company was founded in 2020\"\n"
|
||||
"- \"Sales increased by 25% last quarter\"\n"
|
||||
"- \"The product has 10,000 users\"\n"
|
||||
"- \"The market size is $50 billion\"\n"
|
||||
"- \"The software supports 15 languages\"\n"
|
||||
"- \"The company has offices in 5 countries\"\n\n"
|
||||
"Examples of BAD claims (opinions, subjective statements):\n"
|
||||
"- \"This is the best product\"\n"
|
||||
"- \"Customers love our service\"\n"
|
||||
"- \"We are innovative\"\n"
|
||||
"- \"The future looks bright\"\n\n"
|
||||
"IMPORTANT: Extract at least 2-3 verifiable claims if possible. "
|
||||
"Look for specific facts, numbers, dates, locations, and measurable statements.\n\n"
|
||||
f"Text to analyze: {text}\n\n"
|
||||
"Return only the JSON array of verifiable claims:"
|
||||
)
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
resp = await loop.run_in_executor(executor, lambda: self.gemini_client.models.generate_content(
|
||||
model="gemini-1.5-flash",
|
||||
contents=prompt
|
||||
))
|
||||
|
||||
if not resp or not resp.text:
|
||||
raise Exception("Empty response from Gemini API")
|
||||
|
||||
claims_text = resp.text.strip()
|
||||
logger.info(f"Raw Gemini response for claims: {claims_text[:200]}...")
|
||||
|
||||
# Try to extract JSON from the response
|
||||
try:
|
||||
claims = json.loads(claims_text)
|
||||
except json.JSONDecodeError:
|
||||
# Try to find JSON array in the response (handle markdown code blocks)
|
||||
import re
|
||||
# First try to extract from markdown code blocks
|
||||
code_block_match = re.search(r'```(?:json)?\s*(\[.*?\])\s*```', claims_text, re.DOTALL)
|
||||
if code_block_match:
|
||||
claims = json.loads(code_block_match.group(1))
|
||||
else:
|
||||
# Try to find JSON array directly
|
||||
json_match = re.search(r'\[.*?\]', claims_text, re.DOTALL)
|
||||
if json_match:
|
||||
claims = json.loads(json_match.group())
|
||||
else:
|
||||
raise Exception(f"Could not parse JSON from Gemini response: {claims_text[:100]}")
|
||||
|
||||
if isinstance(claims, list):
|
||||
valid_claims = [claim for claim in claims if isinstance(claim, str) and claim.strip()]
|
||||
logger.info(f"Successfully extracted {len(valid_claims)} claims")
|
||||
return valid_claims
|
||||
else:
|
||||
raise Exception(f"Expected JSON array, got: {type(claims)}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting claims: {str(e)}")
|
||||
raise Exception(f"Failed to extract claims: {str(e)}")
|
||||
|
||||
|
||||
async def _verify_claims_batch(self, claims: List[str]) -> List[Claim]:
|
||||
"""
|
||||
Verify multiple claims in batch to reduce API calls.
|
||||
|
||||
Args:
|
||||
claims: List of claims to verify
|
||||
|
||||
Returns:
|
||||
List of Claim objects with verification results
|
||||
"""
|
||||
try:
|
||||
logger.info(f"Starting batch verification of {len(claims)} claims")
|
||||
|
||||
# Limit to maximum 3 claims to prevent excessive API usage
|
||||
max_claims = min(len(claims), 3)
|
||||
claims_to_verify = claims[:max_claims]
|
||||
|
||||
if len(claims) > max_claims:
|
||||
logger.warning(f"Limited verification to {max_claims} claims to prevent API rate limits")
|
||||
|
||||
# Step 1: Search for evidence for all claims in one batch
|
||||
all_sources = await self._search_evidence_batch(claims_to_verify)
|
||||
|
||||
# Step 2: Assess all claims against sources in one API call
|
||||
verified_claims = await self._assess_claims_batch(claims_to_verify, all_sources)
|
||||
|
||||
# Add any remaining claims as insufficient information
|
||||
for i in range(max_claims, len(claims)):
|
||||
verified_claims.append(Claim(
|
||||
text=claims[i],
|
||||
confidence=0.0,
|
||||
assessment="insufficient_information",
|
||||
supporting_sources=[],
|
||||
refuting_sources=[],
|
||||
reasoning="Not verified due to API rate limit protection"
|
||||
))
|
||||
|
||||
logger.info(f"Batch verification completed for {len(verified_claims)} claims")
|
||||
return verified_claims
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in batch verification: {str(e)}")
|
||||
# Return all claims as insufficient information
|
||||
return [
|
||||
Claim(
|
||||
text=claim,
|
||||
confidence=0.0,
|
||||
assessment="insufficient_information",
|
||||
supporting_sources=[],
|
||||
refuting_sources=[],
|
||||
reasoning=f"Batch verification failed: {str(e)}"
|
||||
)
|
||||
for claim in claims
|
||||
]
|
||||
|
||||
async def _verify_claim(self, claim: str) -> Claim:
|
||||
"""
|
||||
Verify a single claim using Exa.ai search.
|
||||
|
||||
Args:
|
||||
claim: The claim to verify
|
||||
|
||||
Returns:
|
||||
Claim object with verification results
|
||||
"""
|
||||
try:
|
||||
# Search for evidence using Exa.ai
|
||||
sources = await self._search_evidence(claim)
|
||||
|
||||
if not sources:
|
||||
return Claim(
|
||||
text=claim,
|
||||
confidence=0.5,
|
||||
assessment="insufficient_information",
|
||||
supporting_sources=[],
|
||||
refuting_sources=[],
|
||||
reasoning="No sources found for verification"
|
||||
)
|
||||
|
||||
# Verify claim against sources using LLM
|
||||
verification_result = await self._assess_claim_against_sources(claim, sources)
|
||||
|
||||
return Claim(
|
||||
text=claim,
|
||||
confidence=verification_result.get('confidence', 0.5),
|
||||
assessment=verification_result.get('assessment', 'insufficient_information'),
|
||||
supporting_sources=verification_result.get('supporting_sources', []),
|
||||
refuting_sources=verification_result.get('refuting_sources', []),
|
||||
reasoning=verification_result.get('reasoning', '')
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error verifying claim '{claim}': {str(e)}")
|
||||
return Claim(
|
||||
text=claim,
|
||||
confidence=0.5,
|
||||
assessment="insufficient_information",
|
||||
supporting_sources=[],
|
||||
refuting_sources=[],
|
||||
reasoning=f"Error during verification: {str(e)}"
|
||||
)
|
||||
|
||||
async def _search_evidence_batch(self, claims: List[str]) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Search for evidence for multiple claims in one API call.
|
||||
|
||||
Args:
|
||||
claims: List of claims to search for
|
||||
|
||||
Returns:
|
||||
List of sources relevant to the claims
|
||||
"""
|
||||
try:
|
||||
# Combine all claims into one search query
|
||||
combined_query = " ".join(claims[:2]) # Use first 2 claims to avoid query length limits
|
||||
|
||||
logger.info(f"Searching for evidence for {len(claims)} claims with combined query")
|
||||
|
||||
# Use the existing search method with combined query
|
||||
sources = await self._search_evidence(combined_query)
|
||||
|
||||
# Limit sources to prevent excessive processing
|
||||
max_sources = 5
|
||||
if len(sources) > max_sources:
|
||||
sources = sources[:max_sources]
|
||||
logger.info(f"Limited sources to {max_sources} to prevent API rate limits")
|
||||
|
||||
return sources
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in batch evidence search: {str(e)}")
|
||||
return []
|
||||
|
||||
async def _assess_claims_batch(self, claims: List[str], sources: List[Dict[str, Any]]) -> List[Claim]:
|
||||
"""
|
||||
Assess multiple claims against sources in one API call.
|
||||
|
||||
Args:
|
||||
claims: List of claims to assess
|
||||
sources: List of sources to assess against
|
||||
|
||||
Returns:
|
||||
List of Claim objects with assessment results
|
||||
"""
|
||||
if not self.gemini_client:
|
||||
raise Exception("Gemini client not available. Cannot assess claims without AI provider.")
|
||||
|
||||
try:
|
||||
# Limit to 3 claims to prevent excessive API usage
|
||||
claims_to_assess = claims[:3]
|
||||
|
||||
# Prepare sources text
|
||||
combined_sources = "\n\n".join([
|
||||
f"Source {i+1}: {src.get('url','')}\nText: {src.get('text','')[:1000]}"
|
||||
for i, src in enumerate(sources)
|
||||
])
|
||||
|
||||
# Prepare claims text
|
||||
claims_text = "\n".join([
|
||||
f"Claim {i+1}: {claim}"
|
||||
for i, claim in enumerate(claims_to_assess)
|
||||
])
|
||||
|
||||
prompt = (
|
||||
"You are a strict fact-checker. Analyze each claim against the provided sources.\n\n"
|
||||
"Return ONLY a valid JSON object with this exact structure:\n"
|
||||
"{\n"
|
||||
' "assessments": [\n'
|
||||
' {\n'
|
||||
' "claim_index": 0,\n'
|
||||
' "assessment": "supported" or "refuted" or "insufficient_information",\n'
|
||||
' "confidence": number between 0.0 and 1.0,\n'
|
||||
' "supporting_sources": [array of source indices that support the claim],\n'
|
||||
' "refuting_sources": [array of source indices that refute the claim],\n'
|
||||
' "reasoning": "brief explanation of your assessment"\n'
|
||||
' }\n'
|
||||
' ]\n'
|
||||
"}\n\n"
|
||||
f"Claims to verify:\n{claims_text}\n\n"
|
||||
f"Sources:\n{combined_sources}\n\n"
|
||||
"Return only the JSON object:"
|
||||
)
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
resp = await loop.run_in_executor(executor, lambda: self.gemini_client.models.generate_content(
|
||||
model="gemini-1.5-flash",
|
||||
contents=prompt
|
||||
))
|
||||
|
||||
if not resp or not resp.text:
|
||||
raise Exception("Empty response from Gemini API for batch assessment")
|
||||
|
||||
result_text = resp.text.strip()
|
||||
logger.info(f"Raw Gemini response for batch assessment: {result_text[:200]}...")
|
||||
|
||||
# Try to extract JSON from the response
|
||||
try:
|
||||
result = json.loads(result_text)
|
||||
except json.JSONDecodeError:
|
||||
# Try to find JSON object in the response (handle markdown code blocks)
|
||||
import re
|
||||
code_block_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', result_text, re.DOTALL)
|
||||
if code_block_match:
|
||||
result = json.loads(code_block_match.group(1))
|
||||
else:
|
||||
json_match = re.search(r'\{.*?\}', result_text, re.DOTALL)
|
||||
if json_match:
|
||||
result = json.loads(json_match.group())
|
||||
else:
|
||||
raise Exception(f"Could not parse JSON from Gemini response: {result_text[:100]}")
|
||||
|
||||
# Process assessments
|
||||
assessments = result.get('assessments', [])
|
||||
verified_claims = []
|
||||
|
||||
for i, claim in enumerate(claims_to_assess):
|
||||
# Find assessment for this claim
|
||||
assessment = None
|
||||
for a in assessments:
|
||||
if a.get('claim_index') == i:
|
||||
assessment = a
|
||||
break
|
||||
|
||||
if assessment:
|
||||
# Process supporting and refuting sources
|
||||
supporting_sources = []
|
||||
refuting_sources = []
|
||||
|
||||
if isinstance(assessment.get('supporting_sources'), list):
|
||||
for idx in assessment['supporting_sources']:
|
||||
if isinstance(idx, int) and 0 <= idx < len(sources):
|
||||
supporting_sources.append(sources[idx])
|
||||
|
||||
if isinstance(assessment.get('refuting_sources'), list):
|
||||
for idx in assessment['refuting_sources']:
|
||||
if isinstance(idx, int) and 0 <= idx < len(sources):
|
||||
refuting_sources.append(sources[idx])
|
||||
|
||||
verified_claims.append(Claim(
|
||||
text=claim,
|
||||
confidence=float(assessment.get('confidence', 0.5)),
|
||||
assessment=assessment.get('assessment', 'insufficient_information'),
|
||||
supporting_sources=supporting_sources,
|
||||
refuting_sources=refuting_sources,
|
||||
reasoning=assessment.get('reasoning', '')
|
||||
))
|
||||
else:
|
||||
# No assessment found for this claim
|
||||
verified_claims.append(Claim(
|
||||
text=claim,
|
||||
confidence=0.0,
|
||||
assessment="insufficient_information",
|
||||
supporting_sources=[],
|
||||
refuting_sources=[],
|
||||
reasoning="No assessment provided"
|
||||
))
|
||||
|
||||
logger.info(f"Successfully assessed {len(verified_claims)} claims in batch")
|
||||
return verified_claims
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in batch assessment: {str(e)}")
|
||||
# Return all claims as insufficient information
|
||||
return [
|
||||
Claim(
|
||||
text=claim,
|
||||
confidence=0.0,
|
||||
assessment="insufficient_information",
|
||||
supporting_sources=[],
|
||||
refuting_sources=[],
|
||||
reasoning=f"Batch assessment failed: {str(e)}"
|
||||
)
|
||||
for claim in claims_to_assess
|
||||
]
|
||||
|
||||
async def _search_evidence(self, claim: str) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Search for evidence using Exa.ai API.
|
||||
|
||||
Args:
|
||||
claim: The claim to search evidence for
|
||||
|
||||
Returns:
|
||||
List of source documents with evidence
|
||||
"""
|
||||
if not self.exa_api_key:
|
||||
raise Exception("Exa API key not available. Cannot search for evidence without Exa.ai access.")
|
||||
|
||||
try:
|
||||
headers = {
|
||||
'x-api-key': self.exa_api_key,
|
||||
'Content-Type': 'application/json'
|
||||
}
|
||||
|
||||
payload = {
|
||||
'query': claim,
|
||||
'numResults': 5,
|
||||
'text': True,
|
||||
'useAutoprompt': True
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
'https://api.exa.ai/search',
|
||||
headers=headers,
|
||||
json=payload,
|
||||
timeout=15
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
results = data.get('results', [])
|
||||
|
||||
if not results:
|
||||
raise Exception(f"No search results found for claim: {claim}")
|
||||
|
||||
sources = []
|
||||
for result in results:
|
||||
source = {
|
||||
'title': result.get('title', 'Untitled'),
|
||||
'url': result.get('url', ''),
|
||||
'text': result.get('text', ''),
|
||||
'publishedDate': result.get('publishedDate', ''),
|
||||
'author': result.get('author', ''),
|
||||
'score': result.get('score', 0.5)
|
||||
}
|
||||
sources.append(source)
|
||||
|
||||
logger.info(f"Found {len(sources)} sources for claim: {claim[:50]}...")
|
||||
return sources
|
||||
else:
|
||||
raise Exception(f"Exa API error: {response.status_code} - {response.text}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error searching evidence with Exa: {str(e)}")
|
||||
raise Exception(f"Failed to search evidence: {str(e)}")
|
||||
|
||||
|
||||
async def _assess_claim_against_sources(self, claim: str, sources: List[Dict[str, Any]]) -> Dict[str, Any]:
|
||||
"""
|
||||
Assess whether sources support or refute the claim using LLM.
|
||||
|
||||
Args:
|
||||
claim: The claim to assess
|
||||
sources: List of source documents
|
||||
|
||||
Returns:
|
||||
Dictionary with assessment results
|
||||
"""
|
||||
if not self.gemini_client:
|
||||
raise Exception("Gemini client not available. Cannot assess claims without AI provider.")
|
||||
|
||||
try:
|
||||
combined_sources = "\n\n".join([
|
||||
f"Source {i+1}: {src.get('url','')}\nText: {src.get('text','')[:2000]}"
|
||||
for i, src in enumerate(sources)
|
||||
])
|
||||
|
||||
prompt = (
|
||||
"You are a strict fact-checker. Analyze the claim against the provided sources.\n\n"
|
||||
"Return ONLY a valid JSON object with this exact structure:\n"
|
||||
"{\n"
|
||||
' "assessment": "supported" or "refuted" or "insufficient_information",\n'
|
||||
' "confidence": number between 0.0 and 1.0,\n'
|
||||
' "supporting_sources": [array of source indices that support the claim],\n'
|
||||
' "refuting_sources": [array of source indices that refute the claim],\n'
|
||||
' "reasoning": "brief explanation of your assessment"\n'
|
||||
"}\n\n"
|
||||
f"Claim to verify: {claim}\n\n"
|
||||
f"Sources:\n{combined_sources}\n\n"
|
||||
"Return only the JSON object:"
|
||||
)
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
resp = await loop.run_in_executor(executor, lambda: self.gemini_client.models.generate_content(
|
||||
model="gemini-1.5-flash",
|
||||
contents=prompt
|
||||
))
|
||||
|
||||
if not resp or not resp.text:
|
||||
raise Exception("Empty response from Gemini API for claim assessment")
|
||||
|
||||
result_text = resp.text.strip()
|
||||
logger.info(f"Raw Gemini response for assessment: {result_text[:200]}...")
|
||||
|
||||
# Try to extract JSON from the response
|
||||
try:
|
||||
result = json.loads(result_text)
|
||||
except json.JSONDecodeError:
|
||||
# Try to find JSON object in the response (handle markdown code blocks)
|
||||
import re
|
||||
# First try to extract from markdown code blocks
|
||||
code_block_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', result_text, re.DOTALL)
|
||||
if code_block_match:
|
||||
result = json.loads(code_block_match.group(1))
|
||||
else:
|
||||
# Try to find JSON object directly
|
||||
json_match = re.search(r'\{.*?\}', result_text, re.DOTALL)
|
||||
if json_match:
|
||||
result = json.loads(json_match.group())
|
||||
else:
|
||||
raise Exception(f"Could not parse JSON from Gemini response: {result_text[:100]}")
|
||||
|
||||
# Validate required fields
|
||||
required_fields = ['assessment', 'confidence', 'supporting_sources', 'refuting_sources', 'reasoning']
|
||||
for field in required_fields:
|
||||
if field not in result:
|
||||
raise Exception(f"Missing required field '{field}' in assessment response")
|
||||
|
||||
# Process supporting and refuting sources
|
||||
supporting_sources = []
|
||||
refuting_sources = []
|
||||
|
||||
if isinstance(result.get('supporting_sources'), list):
|
||||
for idx in result['supporting_sources']:
|
||||
if isinstance(idx, int) and 0 <= idx < len(sources):
|
||||
supporting_sources.append(sources[idx])
|
||||
|
||||
if isinstance(result.get('refuting_sources'), list):
|
||||
for idx in result['refuting_sources']:
|
||||
if isinstance(idx, int) and 0 <= idx < len(sources):
|
||||
refuting_sources.append(sources[idx])
|
||||
|
||||
# Validate assessment value
|
||||
valid_assessments = ['supported', 'refuted', 'insufficient_information']
|
||||
if result['assessment'] not in valid_assessments:
|
||||
raise Exception(f"Invalid assessment value: {result['assessment']}")
|
||||
|
||||
# Validate confidence value
|
||||
confidence = float(result['confidence'])
|
||||
if not (0.0 <= confidence <= 1.0):
|
||||
raise Exception(f"Invalid confidence value: {confidence}")
|
||||
|
||||
logger.info(f"Successfully assessed claim: {result['assessment']} (confidence: {confidence})")
|
||||
|
||||
return {
|
||||
'assessment': result['assessment'],
|
||||
'confidence': confidence,
|
||||
'supporting_sources': supporting_sources,
|
||||
'refuting_sources': refuting_sources,
|
||||
'reasoning': result['reasoning']
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error assessing claim against sources: {str(e)}")
|
||||
raise Exception(f"Failed to assess claim: {str(e)}")
|
||||
|
||||
Reference in New Issue
Block a user