156 lines
6.1 KiB
Python
156 lines
6.1 KiB
Python
"""
|
|
Research Persona Models
|
|
Pydantic models for AI-generated research personas.
|
|
"""
|
|
|
|
from typing import Dict, Any, List, Optional
|
|
from pydantic import BaseModel, Field
|
|
from datetime import datetime
|
|
|
|
|
|
class ResearchPreset(BaseModel):
|
|
"""Research preset configuration."""
|
|
name: str
|
|
keywords: str
|
|
industry: str
|
|
target_audience: str
|
|
research_mode: str = Field(..., description="basic, comprehensive, or targeted")
|
|
config: Dict[str, Any] = Field(default_factory=dict, description="Complete ResearchConfig object")
|
|
description: Optional[str] = None
|
|
icon: Optional[str] = None
|
|
gradient: Optional[str] = None
|
|
|
|
|
|
class ResearchPersona(BaseModel):
|
|
"""AI-generated research persona providing personalized defaults and suggestions."""
|
|
|
|
# Smart Defaults
|
|
default_industry: str = Field(..., description="Default industry from onboarding data")
|
|
default_target_audience: str = Field(..., description="Default target audience from onboarding data")
|
|
default_research_mode: str = Field(..., description="basic, comprehensive, or targeted")
|
|
default_provider: str = Field(..., description="google or exa")
|
|
|
|
# Keyword Intelligence
|
|
suggested_keywords: List[str] = Field(default_factory=list, description="8-12 relevant keywords")
|
|
keyword_expansion_patterns: Dict[str, List[str]] = Field(
|
|
default_factory=dict,
|
|
description="Mapping of keywords to expanded, industry-specific terms"
|
|
)
|
|
|
|
# Domain & Source Intelligence
|
|
suggested_exa_domains: List[str] = Field(
|
|
default_factory=list,
|
|
description="4-6 authoritative domains for the industry"
|
|
)
|
|
suggested_exa_category: Optional[str] = Field(
|
|
None,
|
|
description="Suggested Exa category based on industry"
|
|
)
|
|
suggested_exa_search_type: Optional[str] = Field(
|
|
None,
|
|
description="Suggested Exa search algorithm: auto, neural, keyword, fast, deep"
|
|
)
|
|
|
|
# Tavily Provider Intelligence
|
|
suggested_tavily_topic: Optional[str] = Field(
|
|
None,
|
|
description="Suggested Tavily topic: general, news, finance"
|
|
)
|
|
suggested_tavily_search_depth: Optional[str] = Field(
|
|
None,
|
|
description="Suggested Tavily search depth: basic, advanced, fast, ultra-fast"
|
|
)
|
|
suggested_tavily_include_answer: Optional[str] = Field(
|
|
None,
|
|
description="Suggested Tavily answer type: false, basic, advanced"
|
|
)
|
|
suggested_tavily_time_range: Optional[str] = Field(
|
|
None,
|
|
description="Suggested Tavily time range: day, week, month, year"
|
|
)
|
|
suggested_tavily_raw_content_format: Optional[str] = Field(
|
|
None,
|
|
description="Suggested Tavily raw content format: false, markdown, text"
|
|
)
|
|
|
|
# Provider Selection Logic
|
|
provider_recommendations: Dict[str, str] = Field(
|
|
default_factory=dict,
|
|
description="Provider recommendations by use case: {'trends': 'tavily', 'deep_research': 'exa', 'factual': 'google'}"
|
|
)
|
|
|
|
# Query Enhancement Intelligence
|
|
research_angles: List[str] = Field(
|
|
default_factory=list,
|
|
description="5-8 alternative research angles/focuses"
|
|
)
|
|
query_enhancement_rules: Dict[str, str] = Field(
|
|
default_factory=dict,
|
|
description="Templates for improving vague user queries"
|
|
)
|
|
|
|
# Research History Insights
|
|
recommended_presets: List[ResearchPreset] = Field(
|
|
default_factory=list,
|
|
description="3-5 personalized research preset templates"
|
|
)
|
|
|
|
# Research Preferences
|
|
research_preferences: Dict[str, Any] = Field(
|
|
default_factory=dict,
|
|
description="Structured research preferences from onboarding"
|
|
)
|
|
|
|
# Metadata
|
|
generated_at: Optional[str] = Field(None, description="ISO timestamp of generation")
|
|
confidence_score: Optional[float] = Field(None, ge=0.0, le=1.0, description="Confidence score 0-1")
|
|
version: Optional[str] = Field(None, description="Schema version")
|
|
|
|
class Config:
|
|
json_schema_extra = {
|
|
"example": {
|
|
"default_industry": "Healthcare",
|
|
"default_target_audience": "Medical professionals and healthcare administrators",
|
|
"default_research_mode": "comprehensive",
|
|
"default_provider": "exa",
|
|
"suggested_keywords": ["telemedicine", "patient care", "healthcare technology"],
|
|
"keyword_expansion_patterns": {
|
|
"AI": ["healthcare AI", "medical AI", "clinical AI"],
|
|
"tools": ["medical devices", "clinical tools"]
|
|
},
|
|
"suggested_exa_domains": ["pubmed.gov", "nejm.org", "thelancet.com"],
|
|
"suggested_exa_category": "research paper",
|
|
"suggested_exa_search_type": "neural",
|
|
"suggested_tavily_topic": "news",
|
|
"suggested_tavily_search_depth": "advanced",
|
|
"suggested_tavily_include_answer": "advanced",
|
|
"suggested_tavily_time_range": "month",
|
|
"suggested_tavily_raw_content_format": "markdown",
|
|
"provider_recommendations": {
|
|
"trends": "tavily",
|
|
"deep_research": "exa",
|
|
"factual": "google",
|
|
"news": "tavily",
|
|
"academic": "exa"
|
|
},
|
|
"research_angles": [
|
|
"Compare telemedicine platforms",
|
|
"Telemedicine ROI analysis",
|
|
"Latest telemedicine trends"
|
|
],
|
|
"query_enhancement_rules": {
|
|
"vague_ai": "Research: AI applications in Healthcare for Medical professionals",
|
|
"vague_tools": "Compare top Healthcare tools"
|
|
},
|
|
"recommended_presets": [],
|
|
"research_preferences": {
|
|
"research_depth": "comprehensive",
|
|
"content_types": ["blog", "article"]
|
|
},
|
|
"generated_at": "2024-01-01T00:00:00Z",
|
|
"confidence_score": 0.85,
|
|
"version": "1.0"
|
|
}
|
|
}
|
|
|