Files
moreminimore-marketing/docs/ALwrity Prompts/AI_INTEGRATION_PLAN.md
Kunthawat Greethong c35fa52117 Base code
2026-01-08 22:39:53 +07:00

24 KiB

🤖 AI Integration Plan for Content Planning System

📋 Current Status Analysis

Issues Identified

  1. Hardcoded Values: All AI services currently use simulated data instead of real AI calls
  2. Missing AI Integration: No actual LLM calls in FastAPI services
  3. Unused AI Infrastructure: Gemini provider exists but not integrated
  4. Missing AI Prompts: Advanced prompts from legacy system not implemented

Available AI Infrastructure

  1. Gemini Provider: backend/llm_providers/gemini_provider.py
  2. Main Text Generation: backend/llm_providers/main_text_generation.py
  3. API Key Management: backend/services/api_key_manager.py
  4. AI Prompts: Available in CONTENT_GAP_ANALYSIS_DEEP_DIVE.md

🎯 AI Integration Strategy

Phase 1: Core AI Integration (Week 1)

1.1 AI Engine Service Enhancement

File: backend/services/content_gap_analyzer/ai_engine_service.py

Current Issues:

  • All methods use hardcoded responses
  • No actual AI calls implemented
  • Missing integration with Gemini provider

Implementation Plan:

# Add imports
from backend.llm_providers.main_text_generation import llm_text_gen
from backend.llm_providers.gemini_provider import gemini_structured_json_response

# Replace hardcoded responses with AI calls
async def analyze_content_gaps(self, analysis_summary: Dict[str, Any]) -> Dict[str, Any]:
    """Analyze content gaps using AI insights."""
    try:
        prompt = f"""
        As an expert SEO content strategist, analyze this comprehensive content gap analysis data and provide actionable insights:

        TARGET ANALYSIS:
        - Website: {analysis_summary.get('target_url', 'N/A')}
        - Industry: {analysis_summary.get('industry', 'N/A')}
        - SERP Opportunities: {analysis_summary.get('serp_opportunities', 0)} keywords not ranking
        - Keyword Expansion: {analysis_summary.get('expanded_keywords_count', 0)} additional keywords identified
        - Competitors Analyzed: {analysis_summary.get('competitors_analyzed', 0)} websites

        DOMINANT CONTENT THEMES:
        {json.dumps(analysis_summary.get('dominant_themes', {}), indent=2)}

        PROVIDE:
        1. Strategic Content Gap Analysis
        2. Priority Content Recommendations (top 5)
        3. Keyword Strategy Insights
        4. Competitive Positioning Advice
        5. Content Format Recommendations
        6. Technical SEO Opportunities
        7. Implementation Timeline (30/60/90 days)

        Format as JSON with clear, actionable recommendations.
        """
        
        # Use structured JSON response for better parsing
        response = gemini_structured_json_response(
            prompt=prompt,
            schema={
                "type": "object",
                "properties": {
                    "strategic_insights": {
                        "type": "array",
                        "items": {
                            "type": "object",
                            "properties": {
                                "type": {"type": "string"},
                                "insight": {"type": "string"},
                                "confidence": {"type": "number"},
                                "priority": {"type": "string"},
                                "estimated_impact": {"type": "string"}
                            }
                        }
                    },
                    "content_recommendations": {
                        "type": "array",
                        "items": {
                            "type": "object",
                            "properties": {
                                "type": {"type": "string"},
                                "recommendation": {"type": "string"},
                                "priority": {"type": "string"},
                                "estimated_traffic": {"type": "string"},
                                "implementation_time": {"type": "string"}
                            }
                        }
                    },
                    "performance_predictions": {
                        "type": "object",
                        "properties": {
                            "estimated_traffic_increase": {"type": "string"},
                            "estimated_ranking_improvement": {"type": "string"},
                            "estimated_engagement_increase": {"type": "string"},
                            "estimated_conversion_increase": {"type": "string"},
                            "confidence_level": {"type": "string"}
                        }
                    }
                }
            }
        )
        
        return json.loads(response)
        
    except Exception as e:
        logger.error(f"Error in AI content gap analysis: {str(e)}")
        return {}

1.2 Keyword Researcher AI Integration

File: backend/services/content_gap_analyzer/keyword_researcher.py

Implementation Plan:

# Add AI integration for keyword analysis
async def _analyze_keyword_trends(self, industry: str, target_keywords: Optional[List[str]] = None) -> Dict[str, Any]:
    """Analyze keyword trends using AI."""
    try:
        prompt = f"""
        Analyze keyword opportunities for {industry} industry:

        Target Keywords: {target_keywords or []}
        
        Provide comprehensive keyword analysis including:
        1. Search volume estimates
        2. Competition levels
        3. Trend analysis
        4. Opportunity scoring
        5. Content format recommendations
        
        Format as structured JSON with detailed analysis.
        """
        
        response = gemini_structured_json_response(
            prompt=prompt,
            schema={
                "type": "object",
                "properties": {
                    "trends": {
                        "type": "object",
                        "additionalProperties": {
                            "type": "object",
                            "properties": {
                                "search_volume": {"type": "number"},
                                "difficulty": {"type": "number"},
                                "trend": {"type": "string"},
                                "competition": {"type": "string"},
                                "intent": {"type": "string"},
                                "cpc": {"type": "number"}
                            }
                        }
                    },
                    "summary": {
                        "type": "object",
                        "properties": {
                            "total_keywords": {"type": "number"},
                            "high_volume_keywords": {"type": "number"},
                            "low_competition_keywords": {"type": "number"},
                            "trending_keywords": {"type": "number"}
                        }
                    }
                }
            }
        )
        
        return json.loads(response)
        
    except Exception as e:
        logger.error(f"Error analyzing keyword trends: {str(e)}")
        return {}

1.3 Competitor Analyzer AI Integration

File: backend/services/content_gap_analyzer/competitor_analyzer.py

Implementation Plan:

# Add AI integration for competitor analysis
async def _evaluate_market_position(self, competitors: List[Dict[str, Any]], industry: str) -> Dict[str, Any]:
    """Evaluate market position using AI."""
    try:
        prompt = f"""
        Analyze the market position of competitors in the {industry} industry:

        Competitor Analyses:
        {json.dumps(competitors, indent=2)}

        Provide:
        1. Market position analysis
        2. Content gaps
        3. Competitive advantages
        4. Strategic positioning recommendations
        
        Format as structured JSON with detailed analysis.
        """
        
        response = gemini_structured_json_response(
            prompt=prompt,
            schema={
                "type": "object",
                "properties": {
                    "market_leader": {"type": "string"},
                    "content_leader": {"type": "string"},
                    "quality_leader": {"type": "string"},
                    "market_gaps": {
                        "type": "array",
                        "items": {"type": "string"}
                    },
                    "opportunities": {
                        "type": "array",
                        "items": {"type": "string"}
                    },
                    "competitive_advantages": {
                        "type": "array",
                        "items": {"type": "string"}
                    },
                    "strategic_recommendations": {
                        "type": "array",
                        "items": {
                            "type": "object",
                            "properties": {
                                "type": {"type": "string"},
                                "recommendation": {"type": "string"},
                                "priority": {"type": "string"},
                                "estimated_impact": {"type": "string"}
                            }
                        }
                    }
                }
            }
        )
        
        return json.loads(response)
        
    except Exception as e:
        logger.error(f"Error evaluating market position: {str(e)}")
        return {}

Phase 2: Advanced AI Features (Week 2)

2.1 Content Performance Prediction

async def predict_content_performance(self, content_data: Dict[str, Any]) -> Dict[str, Any]:
    """Predict content performance using AI."""
    try:
        prompt = f"""
        Predict content performance based on the following data:
        
        Content Data: {json.dumps(content_data, indent=2)}
        
        Provide detailed performance predictions including:
        1. Traffic predictions
        2. Engagement predictions
        3. Ranking predictions
        4. Conversion predictions
        5. Risk factors
        6. Success factors
        
        Format as structured JSON with confidence levels.
        """
        
        response = gemini_structured_json_response(
            prompt=prompt,
            schema={
                "type": "object",
                "properties": {
                    "traffic_predictions": {
                        "type": "object",
                        "properties": {
                            "estimated_monthly_traffic": {"type": "string"},
                            "traffic_growth_rate": {"type": "string"},
                            "peak_traffic_month": {"type": "string"},
                            "confidence_level": {"type": "string"}
                        }
                    },
                    "engagement_predictions": {
                        "type": "object",
                        "properties": {
                            "estimated_time_on_page": {"type": "string"},
                            "estimated_bounce_rate": {"type": "string"},
                            "estimated_social_shares": {"type": "string"},
                            "estimated_comments": {"type": "string"},
                            "confidence_level": {"type": "string"}
                        }
                    },
                    "ranking_predictions": {
                        "type": "object",
                        "properties": {
                            "estimated_ranking_position": {"type": "string"},
                            "estimated_ranking_time": {"type": "string"},
                            "ranking_confidence": {"type": "string"},
                            "competition_level": {"type": "string"}
                        }
                    },
                    "conversion_predictions": {
                        "type": "object",
                        "properties": {
                            "estimated_conversion_rate": {"type": "string"},
                            "estimated_lead_generation": {"type": "string"},
                            "estimated_revenue_impact": {"type": "string"},
                            "confidence_level": {"type": "string"}
                        }
                    },
                    "risk_factors": {
                        "type": "array",
                        "items": {"type": "string"}
                    },
                    "success_factors": {
                        "type": "array",
                        "items": {"type": "string"}
                    }
                }
            }
        )
        
        return json.loads(response)
        
    except Exception as e:
        logger.error(f"Error in AI performance prediction: {str(e)}")
        return {}

2.2 Strategic Intelligence Generation

async def generate_strategic_insights(self, analysis_data: Dict[str, Any]) -> List[Dict[str, Any]]:
    """Generate strategic insights using AI."""
    try:
        prompt = f"""
        Generate strategic insights based on the following analysis data:
        
        Analysis Data: {json.dumps(analysis_data, indent=2)}
        
        Provide strategic insights covering:
        1. Content strategy recommendations
        2. Competitive positioning advice
        3. Content optimization suggestions
        4. Innovation opportunities
        5. Risk mitigation strategies
        
        Format as structured JSON with detailed insights.
        """
        
        response = gemini_structured_json_response(
            prompt=prompt,
            schema={
                "type": "object",
                "properties": {
                    "strategic_insights": {
                        "type": "array",
                        "items": {
                            "type": "object",
                            "properties": {
                                "type": {"type": "string"},
                                "insight": {"type": "string"},
                                "reasoning": {"type": "string"},
                                "priority": {"type": "string"},
                                "estimated_impact": {"type": "string"},
                                "implementation_time": {"type": "string"}
                            }
                        }
                    }
                }
            }
        )
        
        result = json.loads(response)
        return result.get('strategic_insights', [])
        
    except Exception as e:
        logger.error(f"Error generating AI strategic insights: {str(e)}")
        return []

Phase 3: AI Prompt Optimization (Week 3)

3.1 Enhanced AI Prompts

Based on the deep dive analysis, implement these advanced prompts:

Content Gap Analysis Prompt:

CONTENT_GAP_ANALYSIS_PROMPT = """
As an expert SEO content strategist, analyze this comprehensive content gap analysis data and provide actionable insights:

TARGET ANALYSIS:
- Website: {target_url}
- Industry: {industry}
- SERP Opportunities: {serp_opportunities} keywords not ranking
- Keyword Expansion: {expanded_keywords_count} additional keywords identified
- Competitors Analyzed: {competitors_analyzed} websites

DOMINANT CONTENT THEMES:
{dominant_themes}

PROVIDE:
1. Strategic Content Gap Analysis
2. Priority Content Recommendations (top 5)
3. Keyword Strategy Insights
4. Competitive Positioning Advice
5. Content Format Recommendations
6. Technical SEO Opportunities
7. Implementation Timeline (30/60/90 days)

Format as JSON with clear, actionable recommendations.
"""

Market Position Analysis Prompt:

MARKET_POSITION_PROMPT = """
Analyze the market position of competitors in the {industry} industry:

Competitor Analyses:
{competitor_analyses}

Provide:
1. Market position analysis
2. Content gaps
3. Competitive advantages
4. Strategic positioning recommendations

Format as JSON with detailed analysis.
"""

Keyword Analysis Prompt:

KEYWORD_ANALYSIS_PROMPT = """
Analyze keyword opportunities for {industry} industry:

Keyword Trends: {trend_analysis}
Search Intent: {intent_analysis}
Opportunities: {opportunities}

Provide:
1. High-priority keyword recommendations
2. Content format suggestions
3. Topic cluster development
4. Search intent optimization

Format as JSON with detailed analysis.
"""

Phase 4: AI Service Integration (Week 4)

4.1 Create AI Service Manager

File: backend/services/ai_service_manager.py

"""
AI Service Manager
Centralized AI service management for content planning system.
"""

from typing import Dict, Any, List, Optional
from loguru import logger
import json

from backend.llm_providers.main_text_generation import llm_text_gen
from backend.llm_providers.gemini_provider import gemini_structured_json_response

class AIServiceManager:
    """Manages AI service interactions and prompt handling."""
    
    def __init__(self):
        """Initialize AI service manager."""
        self.logger = logger
        self.prompts = self._load_prompts()
    
    def _load_prompts(self) -> Dict[str, str]:
        """Load AI prompts from configuration."""
        return {
            'content_gap_analysis': CONTENT_GAP_ANALYSIS_PROMPT,
            'market_position': MARKET_POSITION_PROMPT,
            'keyword_analysis': KEYWORD_ANALYSIS_PROMPT,
            'performance_prediction': PERFORMANCE_PREDICTION_PROMPT,
            'strategic_insights': STRATEGIC_INSIGHTS_PROMPT
        }
    
    async def generate_content_gap_analysis(self, analysis_data: Dict[str, Any]) -> Dict[str, Any]:
        """Generate content gap analysis using AI."""
        try:
            prompt = self.prompts['content_gap_analysis'].format(**analysis_data)
            
            response = gemini_structured_json_response(
                prompt=prompt,
                schema=CONTENT_GAP_ANALYSIS_SCHEMA
            )
            
            return json.loads(response)
            
        except Exception as e:
            self.logger.error(f"Error generating content gap analysis: {str(e)}")
            return {}
    
    async def generate_market_position_analysis(self, market_data: Dict[str, Any]) -> Dict[str, Any]:
        """Generate market position analysis using AI."""
        try:
            prompt = self.prompts['market_position'].format(**market_data)
            
            response = gemini_structured_json_response(
                prompt=prompt,
                schema=MARKET_POSITION_SCHEMA
            )
            
            return json.loads(response)
            
        except Exception as e:
            self.logger.error(f"Error generating market position analysis: {str(e)}")
            return {}
    
    async def generate_keyword_analysis(self, keyword_data: Dict[str, Any]) -> Dict[str, Any]:
        """Generate keyword analysis using AI."""
        try:
            prompt = self.prompts['keyword_analysis'].format(**keyword_data)
            
            response = gemini_structured_json_response(
                prompt=prompt,
                schema=KEYWORD_ANALYSIS_SCHEMA
            )
            
            return json.loads(response)
            
        except Exception as e:
            self.logger.error(f"Error generating keyword analysis: {str(e)}")
            return {}

4.2 Update All Services to Use AI Manager

# In each service file, replace hardcoded responses with AI calls
from services.ai_service_manager import AIServiceManager

class AIEngineService:
    def __init__(self):
        self.ai_manager = AIServiceManager()
        logger.info("AIEngineService initialized")
    
    async def analyze_content_gaps(self, analysis_summary: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze content gaps using AI insights."""
        return await self.ai_manager.generate_content_gap_analysis(analysis_summary)
    
    async def analyze_market_position(self, market_data: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze market position using AI insights."""
        return await self.ai_manager.generate_market_position_analysis(market_data)

📊 Implementation Timeline

Week 1: Core AI Integration COMPLETED

  • Replace hardcoded responses in AI Engine Service
  • Integrate Gemini provider calls
  • Implement basic AI prompts
  • Test AI functionality

Week 2: Advanced AI Features COMPLETED

  • Implement content performance prediction
  • Add strategic intelligence generation
  • Create comprehensive AI schemas
  • Optimize AI prompts

Week 3: AI Prompt Optimization COMPLETED

  • Implement advanced prompts from deep dive
  • Create structured JSON schemas
  • Optimize prompt performance
  • Add error handling and fallbacks

Status Update: AI Prompt Optimizer Service fully implemented

  • Advanced AI prompts from deep dive analysis implemented
  • Comprehensive JSON schemas for structured responses
  • Optimized prompt performance with expert-level instructions
  • Robust error handling and fallback mechanisms
  • Integration with existing AI engine service

Week 4: AI Service Integration COMPLETED

  • Create AI Service Manager
  • Update all services to use AI Manager
  • Implement centralized AI configuration
  • Add AI performance monitoring

Status Update: AI Service Manager fully implemented

  • Centralized AI service management with performance monitoring
  • All services updated to use AI Service Manager
  • Centralized AI configuration with timeout and retry settings
  • Comprehensive AI performance monitoring with metrics tracking
  • Service breakdown by AI type with success rates and response times

Phase 4 Status Update

Completed Tasks

  1. AI Service Manager

    • Centralized AI service management with performance monitoring
    • Comprehensive AI configuration with timeout and retry settings
    • Service breakdown by AI type with success rates and response times
    • Performance metrics tracking and health monitoring
    • Centralized prompt and schema management
  2. Service Integration

    • AI Engine Service updated to use AI Service Manager
    • All AI calls routed through centralized manager
    • Performance monitoring and metrics collection
    • Error handling and fallback mechanisms
    • Health check integration
  3. Performance Monitoring

    • AI call performance metrics tracking
    • Service breakdown by AI type
    • Success rate monitoring
    • Response time tracking
    • Error rate monitoring

New Features Implemented

  • Centralized AI Management: Single point of control for all AI services
  • Performance Monitoring: Real-time metrics for AI service performance
  • Service Breakdown: Detailed metrics by AI service type
  • Configuration Management: Centralized AI configuration settings
  • Health Monitoring: Comprehensive health checks for AI services

Quality Criteria

  • AI response accuracy > 85%
  • AI response time < 10 seconds
  • AI error rate < 5%
  • AI fallback mechanisms working
  • AI prompts optimized for quality

🔧 Implementation Steps

Step 1: Environment Setup

  1. Verify Gemini API key configuration
  2. Test Gemini provider functionality
  3. Set up AI service monitoring
  4. Configure error handling

Step 2: Core Integration

  1. Update AI Engine Service with real AI calls
  2. Implement structured JSON responses
  3. Add comprehensive error handling
  4. Test AI functionality

Step 3: Service Updates

  1. Update Keyword Researcher with AI integration
  2. Update Competitor Analyzer with AI integration
  3. Update Website Analyzer with AI integration
  4. Test all services with AI

Step 4: Optimization

  1. Optimize AI prompts for better results
  2. Implement AI response caching
  3. Add AI performance monitoring
  4. Create AI fallback mechanisms

📈 Expected Outcomes

Immediate Benefits

  • Real AI-powered insights instead of hardcoded data
  • Dynamic content recommendations
  • Intelligent keyword analysis
  • Strategic competitive intelligence

Long-term Benefits

  • Improved content strategy accuracy
  • Better keyword targeting
  • Enhanced competitive positioning
  • Optimized content performance

Status: Ready for Implementation
Priority: High
Estimated Duration: 4 weeks
Dependencies: Gemini API key, existing AI infrastructure