34 KiB
CopilotKit Technical Specification
ALwrity Strategy Builder Integration
📋 Overview
This document provides detailed technical specifications for integrating CopilotKit into ALwrity's Content Strategy Builder. It includes specific code changes, file modifications, and implementation details.
🏗️ Architecture Changes
Current Architecture
ALwrityApp
├── ContentPlanningDashboard
│ ├── ContentStrategyBuilder
│ │ ├── StrategicInputField
│ │ ├── CategoryList
│ │ └── ActionButtons
│ └── StrategyOnboardingDialog
└── Stores
├── strategyBuilderStore
└── enhancedStrategyStore
New Architecture with CopilotKit
ALwrityApp
├── CopilotKit Provider (Cloud-based)
│ ├── CopilotSidebar
│ └── CopilotContext
├── ContentPlanningDashboard
│ ├── ContentStrategyBuilder
│ │ ├── StrategicInputField
│ │ ├── CategoryList
│ │ ├── ActionButtons
│ │ └── CopilotActions (NEW)
│ └── StrategyOnboardingDialog
├── Stores
│ ├── strategyBuilderStore
│ ├── enhancedStrategyStore
│ └── copilotStore (NEW)
└── Services
├── copilotKitService (NEW)
└── strategyAIService (NEW)
📁 File Modifications
1. App-Level Integration
File: frontend/src/App.tsx
// ADD: CopilotKit imports
import { CopilotKit } from "@copilotkit/react-core";
import { CopilotSidebar } from "@copilotkit/react-ui";
import "@copilotkit/react-ui/styles.css";
// MODIFY: App component
function App() {
return (
<CopilotKit
publicApiKey={process.env.REACT_APP_COPILOTKIT_API_KEY || "demo"}
>
<CopilotSidebar
labels={{
title: "ALwrity Strategy Assistant",
initial: "Hi! I'm here to help you build your content strategy. I can auto-populate fields, provide guidance, and ensure your strategy is comprehensive. What would you like to start with?"
}}
observabilityHooks={{
onChatExpanded: () => analytics.track("strategy_assistant_opened"),
onMessageSent: (message) => analytics.track("strategy_message_sent", { message }),
onFeedbackGiven: (messageId, type) => analytics.track("strategy_feedback", { messageId, type })
}}
>
<Router>
{/* Existing app content */}
</Router>
</CopilotSidebar>
</CopilotKit>
);
}
Key Changes:
- Uses only
publicApiKey(noruntimeUrlneeded) - CopilotKit runs on cloud infrastructure
- Actions communicate with ALwrity's custom backend endpoints
2. Strategy Builder Integration
File: frontend/src/components/ContentPlanningDashboard/components/ContentStrategyBuilder.tsx
// ADD: CopilotKit imports
import { useCopilotAction, useCopilotReadable, useCopilotAdditionalInstructions } from "@copilotkit/react-core";
// ADD: CopilotKit hooks
const ContentStrategyBuilder: React.FC = () => {
// Existing store hooks...
// ADD: CopilotKit context provision
useCopilotReadable({
description: "Current strategy form state and field data",
value: {
formData,
completionPercentage: calculateCompletionPercentage(),
filledFields: Object.keys(formData).filter(key => formData[key]),
emptyFields: Object.keys(formData).filter(key => !formData[key]),
categoryProgress: getCompletionStats().category_completion,
activeCategory,
formErrors
}
});
// ADD: Field definitions context
useCopilotReadable({
description: "Strategy field definitions and requirements",
value: STRATEGIC_INPUT_FIELDS.map(field => ({
id: field.id,
label: field.label,
description: field.description,
tooltip: field.tooltip,
required: field.required,
type: field.type,
options: field.options,
category: field.category
}))
});
// ADD: Onboarding data context
useCopilotReadable({
description: "User onboarding data for personalization",
value: {
websiteAnalysis: personalizationData?.website_analysis,
researchPreferences: personalizationData?.research_preferences,
apiKeys: personalizationData?.api_keys,
userProfile: personalizationData?.user_profile
}
});
// ADD: Dynamic instructions
useCopilotAdditionalInstructions({
instructions: `
You are ALwrity's Strategy Assistant, helping users create comprehensive content strategies.
Current context:
- Form completion: ${calculateCompletionPercentage()}%
- Active category: ${activeCategory}
- Filled fields: ${Object.keys(formData).filter(k => formData[k]).length}/30
Guidelines:
- Always reference real onboarding data when available
- Provide specific, actionable suggestions
- Explain the reasoning behind recommendations
- Help users understand field relationships
- Suggest next steps based on current progress
- Use actual database data, never mock data
`
});
// Existing component logic...
};
3. CopilotKit Actions Implementation
File: frontend/src/components/ContentPlanningDashboard/components/ContentStrategyBuilder/CopilotActions.tsx (NEW)
import { useCopilotAction } from "@copilotkit/react-core";
import { useStrategyBuilderStore } from "../../../../stores/strategyBuilderStore";
import { strategyAIService } from "../../../../services/strategyAIService";
export const useCopilotActions = () => {
const {
formData,
updateFormField,
validateFormField,
setError,
autoPopulatedFields,
dataSources
} = useStrategyBuilderStore();
// Action 1: Populate individual field
useCopilotAction({
name: "populateStrategyField",
description: "Intelligently populate a strategy field with contextual data",
parameters: [
{ name: "fieldId", type: "string", required: true },
{ name: "value", type: "string", required: true },
{ name: "reasoning", type: "string", required: false },
{ name: "dataSource", type: "string", required: false }
],
handler: async ({ fieldId, value, reasoning, dataSource }) => {
try {
// Update form field
updateFormField(fieldId, value);
// Show reasoning to user
if (reasoning) {
showNotification(`Filled ${fieldId}: ${reasoning}`);
}
// Track data source
if (dataSource) {
updateDataSource(fieldId, dataSource);
}
return { success: true, message: `Field ${fieldId} populated successfully` };
} catch (error) {
setError(`Failed to populate field ${fieldId}: ${error.message}`);
return { success: false, message: error.message };
}
}
});
// Action 2: Bulk populate category
useCopilotAction({
name: "populateStrategyCategory",
description: "Populate all fields in a specific category based on user description",
parameters: [
{ name: "category", type: "string", required: true },
{ name: "userDescription", type: "string", required: true }
],
handler: async ({ category, userDescription }) => {
try {
const populatedData = await strategyAIService.generateCategoryData(category, userDescription, formData);
// Update all fields in category
Object.entries(populatedData).forEach(([fieldId, value]) => {
updateFormField(fieldId, value);
});
showNotification(`Populated ${category} fields based on your description`);
return { success: true, message: `Category ${category} populated successfully` };
} catch (error) {
setError(`Failed to populate category ${category}: ${error.message}`);
return { success: false, message: error.message };
}
}
});
// Action 3: Validate field
useCopilotAction({
name: "validateStrategyField",
description: "Validate a strategy field and provide improvement suggestions",
parameters: [
{ name: "fieldId", type: "string", required: true }
],
handler: async ({ fieldId }) => {
try {
const validation = await strategyAIService.validateField(fieldId, formData[fieldId]);
if (validation.isValid) {
showSuccess(`✅ ${fieldId} looks good!`);
} else {
showWarning(`⚠️ ${fieldId}: ${validation.suggestion}`);
}
return { success: true, validation };
} catch (error) {
setError(`Failed to validate field ${fieldId}: ${error.message}`);
return { success: false, message: error.message };
}
}
});
// Action 4: Review strategy
useCopilotAction({
name: "reviewStrategy",
description: "Comprehensive strategy review with AI analysis",
handler: async () => {
try {
const review = await strategyAIService.analyzeStrategy(formData);
return { success: true, review };
} catch (error) {
setError(`Failed to review strategy: ${error.message}`);
return { success: false, message: error.message };
}
}
});
// Action 5: Generate suggestions
useCopilotAction({
name: "generateSuggestions",
description: "Generate contextual suggestions for incomplete fields",
parameters: [
{ name: "fieldId", type: "string", required: true }
],
handler: async ({ fieldId }) => {
try {
const suggestions = await strategyAIService.generateFieldSuggestions(fieldId, formData);
return { success: true, suggestions };
} catch (error) {
setError(`Failed to generate suggestions: ${error.message}`);
return { success: false, message: error.message };
}
}
});
// Action 6: Auto-populate from onboarding
useCopilotAction({
name: "autoPopulateFromOnboarding",
description: "Auto-populate strategy fields using onboarding data",
handler: async () => {
try {
await autoPopulateFromOnboarding();
showNotification("Strategy fields populated from your onboarding data");
return { success: true, message: "Auto-population completed" };
} catch (error) {
setError(`Failed to auto-populate: ${error.message}`);
return { success: false, message: error.message };
}
}
});
};
4. New Services
File: frontend/src/services/strategyAIService.ts (NEW)
import { apiClient } from '../api/client';
export interface FieldValidation {
isValid: boolean;
suggestion?: string;
confidence: number;
}
export interface StrategyReview {
completeness: number;
coherence: number;
alignment: number;
suggestions: string[];
missingFields: string[];
improvements: string[];
}
export interface FieldSuggestions {
suggestions: string[];
reasoning: string;
confidence: number;
}
export const strategyAIService = {
/**
* Generate data for a specific category
*/
async generateCategoryData(category: string, userDescription: string, currentFormData: any): Promise<Record<string, any>> {
try {
const response = await apiClient.post('/api/content-planning/strategy/generate-category-data', {
category,
userDescription,
currentFormData
});
return response.data.data;
} catch (error: any) {
throw new Error(error.response?.data?.detail || 'Failed to generate category data');
}
},
/**
* Validate a specific field
*/
async validateField(fieldId: string, value: any): Promise<FieldValidation> {
try {
const response = await apiClient.post('/api/content-planning/strategy/validate-field', {
fieldId,
value
});
return response.data;
} catch (error: any) {
throw new Error(error.response?.data?.detail || 'Failed to validate field');
}
},
/**
* Analyze complete strategy
*/
async analyzeStrategy(formData: any): Promise<StrategyReview> {
try {
const response = await apiClient.post('/api/content-planning/strategy/analyze', {
formData
});
return response.data;
} catch (error: any) {
throw new Error(error.response?.data?.detail || 'Failed to analyze strategy');
}
},
/**
* Generate suggestions for a field
*/
async generateFieldSuggestions(fieldId: string, currentFormData: any): Promise<FieldSuggestions> {
try {
const response = await apiClient.post('/api/content-planning/strategy/generate-suggestions', {
fieldId,
currentFormData
});
return response.data;
} catch (error: any) {
throw new Error(error.response?.data?.detail || 'Failed to generate suggestions');
}
}
};
5. Backend API Endpoints
File: backend/api/content_planning/strategy_copilot.py (NEW)
from fastapi import APIRouter, HTTPException, Depends
from sqlalchemy.orm import Session
from typing import Dict, Any, List
from services.database import get_db
from services.strategy_copilot_service import StrategyCopilotService
router = APIRouter(prefix="/api/content-planning/strategy", tags=["strategy-copilot"])
@router.post("/generate-category-data")
async def generate_category_data(
request: Dict[str, Any],
db: Session = Depends(get_db)
):
"""Generate data for a specific category based on user description."""
try:
service = StrategyCopilotService(db)
result = await service.generate_category_data(
category=request["category"],
user_description=request["userDescription"],
current_form_data=request["currentFormData"]
)
return {"success": True, "data": result}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@router.post("/validate-field")
async def validate_field(
request: Dict[str, Any],
db: Session = Depends(get_db)
):
"""Validate a specific strategy field."""
try:
service = StrategyCopilotService(db)
result = await service.validate_field(
field_id=request["fieldId"],
value=request["value"]
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@router.post("/analyze")
async def analyze_strategy(
request: Dict[str, Any],
db: Session = Depends(get_db)
):
"""Analyze complete strategy for completeness and coherence."""
try:
service = StrategyCopilotService(db)
result = await service.analyze_strategy(
form_data=request["formData"]
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@router.post("/generate-suggestions")
async def generate_suggestions(
request: Dict[str, Any],
db: Session = Depends(get_db)
):
"""Generate suggestions for a specific field."""
try:
service = StrategyCopilotService(db)
result = await service.generate_field_suggestions(
field_id=request["fieldId"],
current_form_data=request["currentFormData"]
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
6. Backend Service
File: backend/services/strategy_copilot_service.py (NEW)
from typing import Dict, Any, List, Optional
from sqlalchemy.orm import Session
from loguru import logger
from services.onboarding_data_service import OnboardingDataService
from services.user_data_service import UserDataService
from services.llm_providers.google_genai_provider import GoogleGenAIProvider
class StrategyCopilotService:
"""Service for CopilotKit strategy assistance using Gemini."""
def __init__(self, db: Session):
self.db = db
self.onboarding_service = OnboardingDataService()
self.user_data_service = UserDataService(db)
self.llm_provider = GoogleGenAIProvider()
async def generate_category_data(
self,
category: str,
user_description: str,
current_form_data: Dict[str, Any]
) -> Dict[str, Any]:
"""Generate data for a specific category."""
try:
# Get user onboarding data
user_id = 1 # TODO: Get from auth context
onboarding_data = self.onboarding_service.get_personalized_ai_inputs(user_id)
# Build prompt for category generation
prompt = self._build_category_generation_prompt(
category, user_description, current_form_data, onboarding_data
)
# Generate response using Gemini
response = await self.llm_provider.generate_text(prompt)
# Parse and validate response
generated_data = self._parse_category_response(response, category)
return generated_data
except Exception as e:
logger.error(f"Error generating category data: {str(e)}")
raise
async def validate_field(self, field_id: str, value: Any) -> Dict[str, Any]:
"""Validate a specific strategy field."""
try:
# Get field definition
field_definition = self._get_field_definition(field_id)
# Build validation prompt
prompt = self._build_validation_prompt(field_definition, value)
# Generate validation response using Gemini
response = await self.llm_provider.generate_text(prompt)
# Parse validation result
validation_result = self._parse_validation_response(response)
return validation_result
except Exception as e:
logger.error(f"Error validating field {field_id}: {str(e)}")
raise
async def analyze_strategy(self, form_data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze complete strategy for completeness and coherence."""
try:
# Get user data for context
user_id = 1 # TODO: Get from auth context
onboarding_data = self.onboarding_service.get_personalized_ai_inputs(user_id)
# Build analysis prompt
prompt = self._build_analysis_prompt(form_data, onboarding_data)
# Generate analysis using Gemini
response = await self.llm_provider.generate_text(prompt)
# Parse analysis result
analysis_result = self._parse_analysis_response(response)
return analysis_result
except Exception as e:
logger.error(f"Error analyzing strategy: {str(e)}")
raise
async def generate_field_suggestions(
self,
field_id: str,
current_form_data: Dict[str, Any]
) -> Dict[str, Any]:
"""Generate suggestions for a specific field."""
try:
# Get field definition
field_definition = self._get_field_definition(field_id)
# Get user data
user_id = 1 # TODO: Get from auth context
onboarding_data = self.onboarding_service.get_personalized_ai_inputs(user_id)
# Build suggestions prompt
prompt = self._build_suggestions_prompt(
field_definition, current_form_data, onboarding_data
)
# Generate suggestions using Gemini
response = await self.llm_provider.generate_text(prompt)
# Parse suggestions
suggestions = self._parse_suggestions_response(response)
return suggestions
except Exception as e:
logger.error(f"Error generating suggestions for {field_id}: {str(e)}")
raise
def _build_category_generation_prompt(
self,
category: str,
user_description: str,
current_form_data: Dict[str, Any],
onboarding_data: Dict[str, Any]
) -> str:
"""Build prompt for category data generation."""
return f"""
You are ALwrity's Strategy Assistant. Generate data for the {category} category based on the user's description.
User Description: {user_description}
Current Form Data: {current_form_data}
Onboarding Data: {onboarding_data}
Category Fields: {self._get_category_fields(category)}
Generate appropriate values for all fields in the {category} category. Return only valid JSON with field IDs as keys.
Example response format:
{{
"field_id": "value",
"another_field": "value"
}}
"""
def _build_validation_prompt(self, field_definition: Dict[str, Any], value: Any) -> str:
"""Build prompt for field validation."""
return f"""
Validate the following field value:
Field: {field_definition['label']}
Description: {field_definition['description']}
Required: {field_definition['required']}
Type: {field_definition['type']}
Value: {value}
Return JSON with: {{"isValid": boolean, "suggestion": string, "confidence": number}}
Example response:
{{
"isValid": true,
"suggestion": "This looks good!",
"confidence": 0.95
}}
"""
def _build_analysis_prompt(
self,
form_data: Dict[str, Any],
onboarding_data: Dict[str, Any]
) -> str:
"""Build prompt for strategy analysis."""
return f"""
Analyze the following content strategy for completeness, coherence, and alignment:
Form Data: {form_data}
Onboarding Data: {onboarding_data}
Return JSON with: {{
"completeness": number,
"coherence": number,
"alignment": number,
"suggestions": [string],
"missingFields": [string],
"improvements": [string]
}}
Example response:
{{
"completeness": 85,
"coherence": 90,
"alignment": 88,
"suggestions": ["Consider adding more specific metrics"],
"missingFields": ["content_budget"],
"improvements": ["Add timeline details"]
}}
"""
def _build_suggestions_prompt(
self,
field_definition: Dict[str, Any],
current_form_data: Dict[str, Any],
onboarding_data: Dict[str, Any]
) -> str:
"""Build prompt for field suggestions."""
return f"""
Generate suggestions for the following field:
Field: {field_definition['label']}
Description: {field_definition['description']}
Required: {field_definition['required']}
Type: {field_definition['type']}
Current Form Data: {current_form_data}
Onboarding Data: {onboarding_data}
Return JSON with: {{
"suggestions": [string],
"reasoning": string,
"confidence": number
}}
Example response:
{{
"suggestions": ["Focus on measurable outcomes", "Align with business goals"],
"reasoning": "Based on your business context, measurable outcomes will be most effective",
"confidence": 0.92
}}
"""
def _get_field_definition(self, field_id: str) -> Dict[str, Any]:
"""Get field definition from STRATEGIC_INPUT_FIELDS."""
# This would be imported from the frontend field definitions
# For now, return a basic structure
return {
"id": field_id,
"label": field_id.replace("_", " ").title(),
"description": f"Description for {field_id}",
"required": True,
"type": "text"
}
def _get_category_fields(self, category: str) -> List[str]:
"""Get fields for a specific category."""
# This would be imported from the frontend field definitions
category_fields = {
"business_context": [
"business_objectives", "target_metrics", "content_budget", "team_size",
"implementation_timeline", "market_share", "competitive_position", "performance_metrics"
],
"audience_intelligence": [
"content_preferences", "consumption_patterns", "audience_pain_points",
"buying_journey", "seasonal_trends", "engagement_metrics"
],
"competitive_intelligence": [
"top_competitors", "competitor_content_strategies", "market_gaps",
"industry_trends", "emerging_trends"
],
"content_strategy": [
"preferred_formats", "content_mix", "content_frequency", "optimal_timing",
"quality_metrics", "editorial_guidelines", "brand_voice"
],
"performance_analytics": [
"traffic_sources", "conversion_rates", "content_roi_targets", "ab_testing_capabilities"
]
}
return category_fields.get(category, [])
def _parse_category_response(self, response: str, category: str) -> Dict[str, Any]:
"""Parse LLM response for category data."""
try:
import json
# Clean up the response to extract JSON
response = response.strip()
if response.startswith("```json"):
response = response[7:]
if response.endswith("```"):
response = response[:-3]
response = response.strip()
return json.loads(response)
except Exception as e:
logger.error(f"Error parsing category response: {str(e)}")
return {}
def _parse_validation_response(self, response: str) -> Dict[str, Any]:
"""Parse LLM response for validation."""
try:
import json
# Clean up the response to extract JSON
response = response.strip()
if response.startswith("```json"):
response = response[7:]
if response.endswith("```"):
response = response[:-3]
response = response.strip()
return json.loads(response)
except Exception as e:
logger.error(f"Error parsing validation response: {str(e)}")
return {"isValid": False, "suggestion": "Unable to validate", "confidence": 0}
def _parse_analysis_response(self, response: str) -> Dict[str, Any]:
"""Parse LLM response for analysis."""
try:
import json
# Clean up the response to extract JSON
response = response.strip()
if response.startswith("```json"):
response = response[7:]
if response.endswith("```"):
response = response[:-3]
response = response.strip()
return json.loads(response)
except Exception as e:
logger.error(f"Error parsing analysis response: {str(e)}")
return {
"completeness": 0,
"coherence": 0,
"alignment": 0,
"suggestions": [],
"missingFields": [],
"improvements": []
}
def _parse_suggestions_response(self, response: str) -> Dict[str, Any]:
"""Parse LLM response for suggestions."""
try:
import json
# Clean up the response to extract JSON
response = response.strip()
if response.startswith("```json"):
response = response[7:]
if response.endswith("```"):
response = response[:-3]
response = response.strip()
return json.loads(response)
except Exception as e:
logger.error(f"Error parsing suggestions response: {str(e)}")
return {"suggestions": [], "reasoning": "Unable to generate suggestions", "confidence": 0}
🔧 Implementation Steps
Step 1: Install Dependencies
# Frontend
npm install @copilotkit/react-core @copilotkit/react-ui
# Backend (no CopilotKit dependencies needed)
# Only need Google GenAI for Gemini
Step 2: Setup CopilotKit Provider
- Modify
App.tsxto include CopilotKit provider with public API key - Configure CopilotSidebar with ALwrity branding
- Setup observability hooks for analytics
Step 3: Implement Context Provision
- Add
useCopilotReadablehooks in ContentStrategyBuilder - Provide form state, field definitions, and onboarding data
- Setup dynamic instructions based on current state
Step 4: Create CopilotKit Actions
- Create
CopilotActions.tsxcomponent - Implement all 6 core actions
- Add error handling and user feedback
Step 5: Build Backend Services
- Create
strategy_copilot.pyAPI endpoints - Implement
StrategyCopilotServicewith real data integration - Add proper error handling and logging
Step 6: Integration Testing
- Test all CopilotKit actions
- Verify real data integration
- Test user experience flows
🎯 Key Features
1. Real Data Integration
- Onboarding Data: Website analysis, research preferences
- User History: Previous strategies and performance
- Database Queries: All data from real database
- No Mock Data: All responses based on actual user data
2. Contextual Intelligence
- Form State Awareness: Copilot knows current progress
- Field Relationships: Understands field dependencies
- User Preferences: Uses onboarding data for personalization
- Progressive Guidance: Adapts to user progress
3. Smart Actions
- Field Population: Intelligent field filling
- Category Population: Bulk category population
- Validation: Real-time field validation
- Strategy Review: Comprehensive strategy analysis
- Suggestions: Contextual field suggestions
- Auto-Population: Onboarding data integration
4. User Experience
- Persistent Assistant: Always available via sidebar
- Contextual Greeting: Adapts based on user progress
- Real-time Feedback: Immediate validation and suggestions
- Progress Tracking: Visual completion indicators
🔒 Security Considerations
Data Protection
- User Isolation: Each user's data is isolated
- Authentication: All actions require user authentication
- Input Validation: Sanitize all user inputs
- Error Handling: Secure error messages
API Security
- Rate Limiting: Prevent abuse of AI endpoints
- Input Sanitization: Validate all inputs
- Output Validation: Verify AI responses
- Audit Logging: Track all interactions
📊 Performance Optimization
Frontend Optimization
- Selective Re-renders: Use React.memo for components
- Lazy Loading: Load CopilotKit on demand
- Caching: Cache AI responses where appropriate
- Debouncing: Debounce user inputs
Backend Optimization
- Response Caching: Cache common AI responses
- Database Optimization: Optimize database queries
- Async Processing: Use async/await for AI calls
- Connection Pooling: Optimize database connections
🧪 Testing Strategy
Unit Tests
- Action Handlers: Test all CopilotKit actions
- Service Methods: Test backend service methods
- Data Parsing: Test response parsing functions
- Error Handling: Test error scenarios
Integration Tests
- End-to-End Flows: Test complete user journeys
- API Integration: Test frontend-backend integration
- Data Flow: Test data flow between components
- User Experience: Test actual user interactions
Performance Tests
- Response Times: Test AI response times
- Concurrent Users: Test with multiple users
- Memory Usage: Monitor memory consumption
- Database Load: Test database performance
📈 Monitoring and Analytics
User Analytics
- Assistant Usage: Track CopilotKit interactions
- Action Success: Monitor action success rates
- User Satisfaction: Track user feedback
- Completion Rates: Monitor strategy completion
Performance Monitoring
- Response Times: Monitor AI response times
- Error Rates: Track error frequencies
- Resource Usage: Monitor system resources
- Database Performance: Track query performance
🚀 Deployment Checklist
Pre-Deployment
- All tests passing
- Performance benchmarks met
- Security review completed
- Documentation updated
- User acceptance testing completed
Deployment
- Environment variables configured
- Database migrations applied
- API endpoints deployed
- Frontend deployed
- Monitoring configured
Post-Deployment
- Health checks passing
- User feedback collected
- Performance monitored
- Issues addressed
- Success metrics tracked
📝 Conclusion
This technical specification provides a comprehensive roadmap for integrating CopilotKit into ALwrity's strategy builder. The implementation maintains all existing functionality while adding intelligent AI assistance that significantly improves user experience and data quality.
The integration follows best practices for security, performance, and user experience, ensuring a robust and scalable solution that grows with user needs.
Key Success Factors:
- Maintain existing functionality
- Use real data sources
- Provide intelligent assistance
- Ensure security and performance
- Create seamless user experience
This implementation positions ALwrity as a leader in AI-powered content strategy creation, providing users with an unmatched experience in building comprehensive, data-driven content strategies.