Implement saver mode (#154)

This commit is contained in:
Will Chen
2025-05-13 15:34:41 -07:00
committed by GitHub
parent 3763423dc7
commit 069c221292
11 changed files with 1630 additions and 15 deletions

View File

@@ -1,5 +1,5 @@
import { ipcMain } from "electron";
import { CoreMessage, TextPart, ImagePart, streamText } from "ai";
import { CoreMessage, TextPart, ImagePart } from "ai";
import { db } from "../../db";
import { chats, messages } from "../../db/schema";
import { and, eq, isNull } from "drizzle-orm";
@@ -29,6 +29,7 @@ import * as crypto from "crypto";
import { readFile, writeFile, unlink } from "fs/promises";
import { getMaxTokens } from "../utils/token_utils";
import { MAX_CHAT_TURNS_IN_CONTEXT } from "@/constants/settings_constants";
import { streamTextWithBackup } from "../utils/stream_utils";
const logger = log.scope("chat_stream_handlers");
@@ -214,7 +215,7 @@ export function registerChatStreamHandlers() {
} else {
// Normal AI processing for non-test prompts
const settings = readSettings();
const modelClient = await getModelClient(
const { modelClient, backupModelClients } = await getModelClient(
settings.selectedModel,
settings,
);
@@ -372,13 +373,14 @@ This conversation includes one or more image attachments. When the user uploads
}
// When calling streamText, the messages need to be properly formatted for mixed content
const { textStream } = streamText({
const { textStream } = streamTextWithBackup({
maxTokens: await getMaxTokens(settings.selectedModel),
temperature: 0,
model: modelClient,
backupModelClients: backupModelClients,
system: systemPrompt,
messages: chatMessages.filter((m) => m.content),
onError: (error) => {
onError: (error: any) => {
logger.error("Error streaming text:", error);
const message =
(error as any)?.error?.message || JSON.stringify(error);

View File

@@ -12,7 +12,9 @@ export function createLoggedHandler(logger: log.LogFunctions) {
logger.log(`IPC: ${channel} called with args: ${JSON.stringify(args)}`);
try {
const result = await fn(event, ...args);
logger.log(`IPC: ${channel} returned: ${JSON.stringify(result)}`);
logger.log(
`IPC: ${channel} returned: ${JSON.stringify(result).slice(0, 100)}...`,
);
return result;
} catch (error) {
logger.error(

View File

@@ -1,3 +1,4 @@
import { LanguageModelV1 } from "ai";
import { createOpenAI } from "@ai-sdk/openai";
import { createGoogleGenerativeAI as createGoogle } from "@ai-sdk/google";
import { createAnthropic } from "@ai-sdk/anthropic";
@@ -8,6 +9,8 @@ import type { LargeLanguageModel, UserSettings } from "../../lib/schemas";
import { getEnvVar } from "./read_env";
import log from "electron-log";
import { getLanguageModelProviders } from "../shared/language_model_helpers";
import { LanguageModelProvider } from "../ipc_types";
import { llmErrorStore } from "@/main/llm_error_store";
const AUTO_MODELS = [
{
@@ -24,11 +27,19 @@ const AUTO_MODELS = [
},
];
export interface ModelClient {
model: LanguageModelV1;
builtinProviderId?: string;
}
const logger = log.scope("getModelClient");
export async function getModelClient(
model: LargeLanguageModel,
settings: UserSettings,
) {
): Promise<{
modelClient: ModelClient;
backupModelClients: ModelClient[];
}> {
const allProviders = await getLanguageModelProviders();
const dyadApiKey = settings.providerSettings?.auto?.apiKey?.value;
@@ -83,7 +94,44 @@ export async function getModelClient(
logger.info("Using Dyad Pro API key via Gateway");
// Do not use free variant (for openrouter).
const modelName = model.name.split(":free")[0];
return provider(`${providerConfig.gatewayPrefix}${modelName}`);
const autoModelClient = {
model: provider(`${providerConfig.gatewayPrefix}${modelName}`),
builtinProviderId: "auto",
};
const googleSettings = settings.providerSettings?.google;
// Budget saver mode logic (all must be true):
// 1. Pro Saver Mode is enabled
// 2. Provider is Google
// 3. API Key is set
// 4. Has no recent errors
if (
settings.enableProSaverMode &&
providerConfig.id === "google" &&
googleSettings &&
googleSettings.apiKey?.value &&
llmErrorStore.modelHasNoRecentError({
model: model.name,
provider: providerConfig.id,
})
) {
return {
modelClient: getRegularModelClient(
{
provider: providerConfig.id,
name: model.name,
},
settings,
providerConfig,
).modelClient,
backupModelClients: [autoModelClient],
};
} else {
return {
modelClient: autoModelClient,
backupModelClients: [],
};
}
} else {
logger.warn(
`Dyad Pro enabled, but provider ${model.provider} does not have a gateway prefix defined. Falling back to direct provider connection.`,
@@ -91,7 +139,14 @@ export async function getModelClient(
// Fall through to regular provider logic if gateway prefix is missing
}
}
return getRegularModelClient(model, settings, providerConfig);
}
function getRegularModelClient(
model: LargeLanguageModel,
settings: UserSettings,
providerConfig: LanguageModelProvider,
) {
// Get API key for the specific provider
const apiKey =
settings.providerSettings?.[model.provider]?.apiKey?.value ||
@@ -99,30 +154,60 @@ export async function getModelClient(
? getEnvVar(providerConfig.envVarName)
: undefined);
const providerId = providerConfig.id;
// Create client based on provider ID or type
switch (providerConfig.id) {
switch (providerId) {
case "openai": {
const provider = createOpenAI({ apiKey });
return provider(model.name);
return {
modelClient: {
model: provider(model.name),
builtinProviderId: providerId,
},
backupModelClients: [],
};
}
case "anthropic": {
const provider = createAnthropic({ apiKey });
return provider(model.name);
return {
modelClient: {
model: provider(model.name),
builtinProviderId: providerId,
},
backupModelClients: [],
};
}
case "google": {
const provider = createGoogle({ apiKey });
return provider(model.name);
return {
modelClient: {
model: provider(model.name),
builtinProviderId: providerId,
},
backupModelClients: [],
};
}
case "openrouter": {
const provider = createOpenRouter({ apiKey });
return provider(model.name);
return {
modelClient: {
model: provider(model.name),
builtinProviderId: providerId,
},
backupModelClients: [],
};
}
case "ollama": {
// Ollama typically runs locally and doesn't require an API key in the same way
const provider = createOllama({
baseURL: providerConfig.apiBaseUrl,
});
return provider(model.name);
return {
modelClient: {
model: provider(model.name),
},
backupModelClients: [],
};
}
case "lmstudio": {
// LM Studio uses OpenAI compatible API
@@ -131,7 +216,12 @@ export async function getModelClient(
name: "lmstudio",
baseURL,
});
return provider(model.name);
return {
modelClient: {
model: provider(model.name),
},
backupModelClients: [],
};
}
default: {
// Handle custom providers
@@ -147,7 +237,12 @@ export async function getModelClient(
baseURL: providerConfig.apiBaseUrl,
apiKey: apiKey,
});
return provider(model.name);
return {
modelClient: {
model: provider(model.name),
},
backupModelClients: [],
};
}
// If it's not a known ID and not type 'custom', it's unsupported
throw new Error(`Unsupported model provider: ${model.provider}`);

View File

@@ -0,0 +1,123 @@
import { streamText } from "ai";
import log from "electron-log";
import { ModelClient } from "./get_model_client";
import { llmErrorStore } from "@/main/llm_error_store";
const logger = log.scope("stream_utils");
export interface StreamTextWithBackupParams
extends Omit<Parameters<typeof streamText>[0], "model"> {
model: ModelClient; // primary client
backupModelClients?: ModelClient[]; // ordered fall-backs
}
export function streamTextWithBackup(params: StreamTextWithBackupParams): {
textStream: AsyncIterable<string>;
} {
const {
model: primaryModel,
backupModelClients = [],
onError: callerOnError,
abortSignal: callerAbort,
...rest
} = params;
const modelClients: ModelClient[] = [primaryModel, ...backupModelClients];
async function* combinedGenerator(): AsyncIterable<string> {
let lastErr: { error: unknown } | undefined = undefined;
for (let i = 0; i < modelClients.length; i++) {
const currentModelClient = modelClients[i];
/* Local abort controller for this single attempt */
const attemptAbort = new AbortController();
if (callerAbort) {
if (callerAbort.aborted) {
// Already aborted, trigger immediately
attemptAbort.abort();
} else {
callerAbort.addEventListener("abort", () => attemptAbort.abort(), {
once: true,
});
}
}
let errorFromCurrent: { error: unknown } | undefined = undefined; // set when onError fires
const providerId = currentModelClient.builtinProviderId;
if (providerId) {
llmErrorStore.clearModelError({
model: currentModelClient.model.modelId,
provider: providerId,
});
}
logger.info(
"Streaming text with model",
currentModelClient.model.modelId,
"provider",
currentModelClient.model.provider,
"builtinProviderId",
currentModelClient.builtinProviderId,
);
const { textStream } = streamText({
...rest,
maxRetries: 0,
model: currentModelClient.model,
abortSignal: attemptAbort.signal,
onError: (error) => {
const providerId = currentModelClient.builtinProviderId;
if (providerId) {
llmErrorStore.recordModelError({
model: currentModelClient.model.modelId,
provider: providerId,
});
}
logger.error(
`Error streaming text with ${providerId} and model ${currentModelClient.model.modelId}: ${error}`,
error,
);
errorFromCurrent = error;
attemptAbort.abort(); // kill fetch / SSE
},
});
try {
for await (const chunk of textStream) {
/* If onError fired during streaming, bail out immediately. */
if (errorFromCurrent) throw errorFromCurrent;
yield chunk;
}
/* Stream ended check if it actually failed */
if (errorFromCurrent) throw errorFromCurrent;
/* Completed successfully stop trying more models. */
return;
} catch (err) {
if (typeof err === "object" && err !== null && "error" in err) {
lastErr = err as { error: unknown };
} else {
lastErr = { error: err };
}
logger.warn(
`[streamTextWithBackup] model #${i} failed ${
i < modelClients.length - 1
? "switching to backup"
: "no backups left"
}`,
err,
);
/* loop continues to next model (if any) */
}
}
/* Every model failed */
if (!lastErr) {
throw new Error("Invariant in StreamTextWithbackup failed!");
}
callerOnError?.(lastErr);
logger.error("All model invocations failed", lastErr);
// throw lastErr ?? new Error("All model invocations failed");
}
return { textStream: combinedGenerator() };
}

View File

@@ -0,0 +1,35 @@
class LlmErrorStore {
private modelErrorToTimestamp: Record<string, number> = {};
constructor() {}
recordModelError({ model, provider }: { model: string; provider: string }) {
this.modelErrorToTimestamp[this.getKey({ model, provider })] = Date.now();
}
clearModelError({ model, provider }: { model: string; provider: string }) {
delete this.modelErrorToTimestamp[this.getKey({ model, provider })];
}
modelHasNoRecentError({
model,
provider,
}: {
model: string;
provider: string;
}): boolean {
const key = this.getKey({ model, provider });
const timestamp = this.modelErrorToTimestamp[key];
if (!timestamp) {
return true;
}
const oneHourAgo = Date.now() - 1000 * 60 * 60;
return timestamp < oneHourAgo;
}
private getKey({ model, provider }: { model: string; provider: string }) {
return `${provider}::${model}`;
}
}
export const llmErrorStore = new LlmErrorStore();

View File

@@ -0,0 +1,116 @@
# Fake LLM Server
A simple server that mimics the OpenAI streaming chat completions API for testing purposes.
## Features
- Implements a basic version of the OpenAI chat completions API
- Supports both streaming and non-streaming responses
- Always responds with "hello world" message
- Simulates a 429 rate limit error when the last message is "[429]"
- Configurable through environment variables
## Installation
```bash
npm install
```
## Usage
Start the server:
```bash
# Development mode
npm run dev
# Production mode
npm run build
npm start
```
### Example usage
```
curl -X POST http://localhost:3500/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{"messages":[{"role":"user","content":"Say something"}],"model":"any-model","stream":true}'
```
The server will be available at http://localhost:3500 by default.
## API Endpoints
### POST /v1/chat/completions
This endpoint mimics OpenAI's chat completions API.
#### Request Format
```json
{
"messages": [{ "role": "user", "content": "Your prompt here" }],
"model": "any-model",
"stream": true
}
```
- Set `stream: true` to receive a streaming response
- Set `stream: false` or omit it for a regular JSON response
#### Response
For non-streaming requests, you'll get a standard JSON response:
```json
{
"id": "chatcmpl-123456789",
"object": "chat.completion",
"created": 1699000000,
"model": "fake-model",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "hello world"
},
"finish_reason": "stop"
}
]
}
```
For streaming requests, you'll receive a series of server-sent events (SSE), each containing a chunk of the response.
### Simulating Rate Limit Errors
To test how your application handles rate limiting, send a message with content exactly equal to `[429]`:
```json
{
"messages": [{ "role": "user", "content": "[429]" }],
"model": "any-model"
}
```
This will return a 429 status code with the following response:
```json
{
"error": {
"message": "Too many requests. Please try again later.",
"type": "rate_limit_error",
"param": null,
"code": "rate_limit_exceeded"
}
}
```
## Configuration
You can configure the server by modifying the `PORT` variable in the code.
## Use Case
This server is primarily intended for testing applications that integrate with OpenAI's API, allowing you to develop and test without making actual API calls to OpenAI.

90
testing/fake-llm-server/dist/index.js vendored Normal file
View File

@@ -0,0 +1,90 @@
"use strict";
var __importDefault =
(this && this.__importDefault) ||
function (mod) {
return mod && mod.__esModule ? mod : { default: mod };
};
Object.defineProperty(exports, "__esModule", { value: true });
const express_1 = __importDefault(require("express"));
const http_1 = require("http");
const cors_1 = __importDefault(require("cors"));
// Create Express app
const app = (0, express_1.default)();
app.use((0, cors_1.default)());
app.use(express_1.default.json());
const PORT = 3500;
// Helper function to create OpenAI-like streaming response chunks
function createStreamChunk(content, role = "assistant", isLast = false) {
const chunk = {
id: `chatcmpl-${Date.now()}`,
object: "chat.completion.chunk",
created: Math.floor(Date.now() / 1000),
model: "fake-model",
choices: [
{
index: 0,
delta: isLast ? {} : { content, role },
finish_reason: isLast ? "stop" : null,
},
],
};
return `data: ${JSON.stringify(chunk)}\n\n${isLast ? "data: [DONE]\n\n" : ""}`;
}
// Handle POST requests to /v1/chat/completions
app.post("/v1/chat/completions", (req, res) => {
const { stream = false } = req.body;
// Non-streaming response
if (!stream) {
return res.json({
id: `chatcmpl-${Date.now()}`,
object: "chat.completion",
created: Math.floor(Date.now() / 1000),
model: "fake-model",
choices: [
{
index: 0,
message: {
role: "assistant",
content: "hello world",
},
finish_reason: "stop",
},
],
});
}
// Streaming response
res.setHeader("Content-Type", "text/event-stream");
res.setHeader("Cache-Control", "no-cache");
res.setHeader("Connection", "keep-alive");
// Split the "hello world" message into characters to simulate streaming
const message = "hello world";
const messageChars = message.split("");
// Stream each character with a delay
let index = 0;
// Send role first
res.write(createStreamChunk("", "assistant"));
const interval = setInterval(() => {
if (index < messageChars.length) {
res.write(createStreamChunk(messageChars[index]));
index++;
} else {
// Send the final chunk
res.write(createStreamChunk("", "assistant", true));
clearInterval(interval);
res.end();
}
}, 100);
});
// Start the server
const server = (0, http_1.createServer)(app);
server.listen(PORT, () => {
console.log(`Fake LLM server running on http://localhost:${PORT}`);
});
// Handle SIGINT (Ctrl+C)
process.on("SIGINT", () => {
console.log("Shutting down fake LLM server");
server.close(() => {
console.log("Server closed");
process.exit(0);
});
});

View File

@@ -0,0 +1,113 @@
import express from "express";
import { createServer } from "http";
import cors from "cors";
// Create Express app
const app = express();
app.use(cors());
app.use(express.json());
const PORT = 3500;
// Helper function to create OpenAI-like streaming response chunks
function createStreamChunk(
content: string,
role: string = "assistant",
isLast: boolean = false,
) {
const chunk = {
id: `chatcmpl-${Date.now()}`,
object: "chat.completion.chunk",
created: Math.floor(Date.now() / 1000),
model: "fake-model",
choices: [
{
index: 0,
delta: isLast ? {} : { content, role },
finish_reason: isLast ? "stop" : null,
},
],
};
return `data: ${JSON.stringify(chunk)}\n\n${isLast ? "data: [DONE]\n\n" : ""}`;
}
// Handle POST requests to /v1/chat/completions
app.post("/v1/chat/completions", (req, res) => {
const { stream = false, messages = [] } = req.body;
// Check if the last message contains "[429]" to simulate rate limiting
const lastMessage = messages[messages.length - 1];
if (lastMessage && lastMessage.content === "[429]") {
return res.status(429).json({
error: {
message: "Too many requests. Please try again later.",
type: "rate_limit_error",
param: null,
code: "rate_limit_exceeded",
},
});
}
// Non-streaming response
if (!stream) {
return res.json({
id: `chatcmpl-${Date.now()}`,
object: "chat.completion",
created: Math.floor(Date.now() / 1000),
model: "fake-model",
choices: [
{
index: 0,
message: {
role: "assistant",
content: "hello world",
},
finish_reason: "stop",
},
],
});
}
// Streaming response
res.setHeader("Content-Type", "text/event-stream");
res.setHeader("Cache-Control", "no-cache");
res.setHeader("Connection", "keep-alive");
// Split the "hello world" message into characters to simulate streaming
const message = "hello world";
const messageChars = message.split("");
// Stream each character with a delay
let index = 0;
// Send role first
res.write(createStreamChunk("", "assistant"));
const interval = setInterval(() => {
if (index < messageChars.length) {
res.write(createStreamChunk(messageChars[index]));
index++;
} else {
// Send the final chunk
res.write(createStreamChunk("", "assistant", true));
clearInterval(interval);
res.end();
}
}, 100);
});
// Start the server
const server = createServer(app);
server.listen(PORT, () => {
console.log(`Fake LLM server running on http://localhost:${PORT}`);
});
// Handle SIGINT (Ctrl+C)
process.on("SIGINT", () => {
console.log("Shutting down fake LLM server");
server.close(() => {
console.log("Server closed");
process.exit(0);
});
});

999
testing/fake-llm-server/package-lock.json generated Normal file
View File

@@ -0,0 +1,999 @@
{
"name": "fake-llm-server",
"version": "1.0.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "fake-llm-server",
"version": "1.0.0",
"license": "ISC",
"dependencies": {
"cors": "^2.8.5",
"express": "^4.18.2",
"stream": "0.0.2"
},
"devDependencies": {
"@types/cors": "^2.8.18",
"@types/express": "^4.17.21",
"@types/node": "^20.17.46",
"ts-node": "^10.9.2",
"typescript": "^5.8.3"
}
},
"node_modules/@cspotcode/source-map-support": {
"version": "0.8.1",
"dev": true,
"license": "MIT",
"dependencies": {
"@jridgewell/trace-mapping": "0.3.9"
},
"engines": {
"node": ">=12"
}
},
"node_modules/@jridgewell/resolve-uri": {
"version": "3.1.2",
"dev": true,
"license": "MIT",
"engines": {
"node": ">=6.0.0"
}
},
"node_modules/@jridgewell/sourcemap-codec": {
"version": "1.5.0",
"dev": true,
"license": "MIT"
},
"node_modules/@jridgewell/trace-mapping": {
"version": "0.3.9",
"dev": true,
"license": "MIT",
"dependencies": {
"@jridgewell/resolve-uri": "^3.0.3",
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@tsconfig/node10": {
"version": "1.0.11",
"dev": true,
"license": "MIT"
},
"node_modules/@tsconfig/node12": {
"version": "1.0.11",
"dev": true,
"license": "MIT"
},
"node_modules/@tsconfig/node14": {
"version": "1.0.3",
"dev": true,
"license": "MIT"
},
"node_modules/@tsconfig/node16": {
"version": "1.0.4",
"dev": true,
"license": "MIT"
},
"node_modules/@types/body-parser": {
"version": "1.19.5",
"dev": true,
"license": "MIT",
"dependencies": {
"@types/connect": "*",
"@types/node": "*"
}
},
"node_modules/@types/connect": {
"version": "3.4.38",
"dev": true,
"license": "MIT",
"dependencies": {
"@types/node": "*"
}
},
"node_modules/@types/cors": {
"version": "2.8.18",
"dev": true,
"license": "MIT",
"dependencies": {
"@types/node": "*"
}
},
"node_modules/@types/express": {
"version": "4.17.21",
"dev": true,
"license": "MIT",
"dependencies": {
"@types/body-parser": "*",
"@types/express-serve-static-core": "^4.17.33",
"@types/qs": "*",
"@types/serve-static": "*"
}
},
"node_modules/@types/express-serve-static-core": {
"version": "4.19.6",
"dev": true,
"license": "MIT",
"dependencies": {
"@types/node": "*",
"@types/qs": "*",
"@types/range-parser": "*",
"@types/send": "*"
}
},
"node_modules/@types/http-errors": {
"version": "2.0.4",
"dev": true,
"license": "MIT"
},
"node_modules/@types/mime": {
"version": "1.3.5",
"dev": true,
"license": "MIT"
},
"node_modules/@types/node": {
"version": "20.17.46",
"dev": true,
"license": "MIT",
"dependencies": {
"undici-types": "~6.19.2"
}
},
"node_modules/@types/qs": {
"version": "6.9.18",
"dev": true,
"license": "MIT"
},
"node_modules/@types/range-parser": {
"version": "1.2.7",
"dev": true,
"license": "MIT"
},
"node_modules/@types/send": {
"version": "0.17.4",
"dev": true,
"license": "MIT",
"dependencies": {
"@types/mime": "^1",
"@types/node": "*"
}
},
"node_modules/@types/serve-static": {
"version": "1.15.7",
"dev": true,
"license": "MIT",
"dependencies": {
"@types/http-errors": "*",
"@types/node": "*",
"@types/send": "*"
}
},
"node_modules/accepts": {
"version": "1.3.8",
"license": "MIT",
"dependencies": {
"mime-types": "~2.1.34",
"negotiator": "0.6.3"
},
"engines": {
"node": ">= 0.6"
}
},
"node_modules/acorn": {
"version": "8.14.1",
"dev": true,
"license": "MIT",
"bin": {
"acorn": "bin/acorn"
},
"engines": {
"node": ">=0.4.0"
}
},
"node_modules/acorn-walk": {
"version": "8.3.4",
"dev": true,
"license": "MIT",
"dependencies": {
"acorn": "^8.11.0"
},
"engines": {
"node": ">=0.4.0"
}
},
"node_modules/arg": {
"version": "4.1.3",
"dev": true,
"license": "MIT"
},
"node_modules/array-flatten": {
"version": "1.1.1",
"license": "MIT"
},
"node_modules/body-parser": {
"version": "1.20.3",
"license": "MIT",
"dependencies": {
"bytes": "3.1.2",
"content-type": "~1.0.5",
"debug": "2.6.9",
"depd": "2.0.0",
"destroy": "1.2.0",
"http-errors": "2.0.0",
"iconv-lite": "0.4.24",
"on-finished": "2.4.1",
"qs": "6.13.0",
"raw-body": "2.5.2",
"type-is": "~1.6.18",
"unpipe": "1.0.0"
},
"engines": {
"node": ">= 0.8",
"npm": "1.2.8000 || >= 1.4.16"
}
},
"node_modules/bytes": {
"version": "3.1.2",
"license": "MIT",
"engines": {
"node": ">= 0.8"
}
},
"node_modules/call-bind-apply-helpers": {
"version": "1.0.2",
"license": "MIT",
"dependencies": {
"es-errors": "^1.3.0",
"function-bind": "^1.1.2"
},
"engines": {
"node": ">= 0.4"
}
},
"node_modules/call-bound": {
"version": "1.0.4",
"license": "MIT",
"dependencies": {
"call-bind-apply-helpers": "^1.0.2",
"get-intrinsic": "^1.3.0"
},
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/content-disposition": {
"version": "0.5.4",
"license": "MIT",
"dependencies": {
"safe-buffer": "5.2.1"
},
"engines": {
"node": ">= 0.6"
}
},
"node_modules/content-type": {
"version": "1.0.5",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
},
"node_modules/cookie": {
"version": "0.7.1",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
},
"node_modules/cookie-signature": {
"version": "1.0.6",
"license": "MIT"
},
"node_modules/cors": {
"version": "2.8.5",
"license": "MIT",
"dependencies": {
"object-assign": "^4",
"vary": "^1"
},
"engines": {
"node": ">= 0.10"
}
},
"node_modules/create-require": {
"version": "1.1.1",
"dev": true,
"license": "MIT"
},
"node_modules/debug": {
"version": "2.6.9",
"license": "MIT",
"dependencies": {
"ms": "2.0.0"
}
},
"node_modules/depd": {
"version": "2.0.0",
"license": "MIT",
"engines": {
"node": ">= 0.8"
}
},
"node_modules/destroy": {
"version": "1.2.0",
"license": "MIT",
"engines": {
"node": ">= 0.8",
"npm": "1.2.8000 || >= 1.4.16"
}
},
"node_modules/diff": {
"version": "4.0.2",
"dev": true,
"license": "BSD-3-Clause",
"engines": {
"node": ">=0.3.1"
}
},
"node_modules/dunder-proto": {
"version": "1.0.1",
"license": "MIT",
"dependencies": {
"call-bind-apply-helpers": "^1.0.1",
"es-errors": "^1.3.0",
"gopd": "^1.2.0"
},
"engines": {
"node": ">= 0.4"
}
},
"node_modules/ee-first": {
"version": "1.1.1",
"license": "MIT"
},
"node_modules/emitter-component": {
"version": "1.1.2",
"funding": {
"url": "https://github.com/sponsors/sindresorhus"
}
},
"node_modules/encodeurl": {
"version": "2.0.0",
"license": "MIT",
"engines": {
"node": ">= 0.8"
}
},
"node_modules/es-define-property": {
"version": "1.0.1",
"license": "MIT",
"engines": {
"node": ">= 0.4"
}
},
"node_modules/es-errors": {
"version": "1.3.0",
"license": "MIT",
"engines": {
"node": ">= 0.4"
}
},
"node_modules/es-object-atoms": {
"version": "1.1.1",
"license": "MIT",
"dependencies": {
"es-errors": "^1.3.0"
},
"engines": {
"node": ">= 0.4"
}
},
"node_modules/escape-html": {
"version": "1.0.3",
"license": "MIT"
},
"node_modules/etag": {
"version": "1.8.1",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
},
"node_modules/express": {
"version": "4.21.2",
"license": "MIT",
"dependencies": {
"accepts": "~1.3.8",
"array-flatten": "1.1.1",
"body-parser": "1.20.3",
"content-disposition": "0.5.4",
"content-type": "~1.0.4",
"cookie": "0.7.1",
"cookie-signature": "1.0.6",
"debug": "2.6.9",
"depd": "2.0.0",
"encodeurl": "~2.0.0",
"escape-html": "~1.0.3",
"etag": "~1.8.1",
"finalhandler": "1.3.1",
"fresh": "0.5.2",
"http-errors": "2.0.0",
"merge-descriptors": "1.0.3",
"methods": "~1.1.2",
"on-finished": "2.4.1",
"parseurl": "~1.3.3",
"path-to-regexp": "0.1.12",
"proxy-addr": "~2.0.7",
"qs": "6.13.0",
"range-parser": "~1.2.1",
"safe-buffer": "5.2.1",
"send": "0.19.0",
"serve-static": "1.16.2",
"setprototypeof": "1.2.0",
"statuses": "2.0.1",
"type-is": "~1.6.18",
"utils-merge": "1.0.1",
"vary": "~1.1.2"
},
"engines": {
"node": ">= 0.10.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/express"
}
},
"node_modules/finalhandler": {
"version": "1.3.1",
"license": "MIT",
"dependencies": {
"debug": "2.6.9",
"encodeurl": "~2.0.0",
"escape-html": "~1.0.3",
"on-finished": "2.4.1",
"parseurl": "~1.3.3",
"statuses": "2.0.1",
"unpipe": "~1.0.0"
},
"engines": {
"node": ">= 0.8"
}
},
"node_modules/forwarded": {
"version": "0.2.0",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
},
"node_modules/fresh": {
"version": "0.5.2",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
},
"node_modules/function-bind": {
"version": "1.1.2",
"license": "MIT",
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/get-intrinsic": {
"version": "1.3.0",
"license": "MIT",
"dependencies": {
"call-bind-apply-helpers": "^1.0.2",
"es-define-property": "^1.0.1",
"es-errors": "^1.3.0",
"es-object-atoms": "^1.1.1",
"function-bind": "^1.1.2",
"get-proto": "^1.0.1",
"gopd": "^1.2.0",
"has-symbols": "^1.1.0",
"hasown": "^2.0.2",
"math-intrinsics": "^1.1.0"
},
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/get-proto": {
"version": "1.0.1",
"license": "MIT",
"dependencies": {
"dunder-proto": "^1.0.1",
"es-object-atoms": "^1.0.0"
},
"engines": {
"node": ">= 0.4"
}
},
"node_modules/gopd": {
"version": "1.2.0",
"license": "MIT",
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/has-symbols": {
"version": "1.1.0",
"license": "MIT",
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/hasown": {
"version": "2.0.2",
"license": "MIT",
"dependencies": {
"function-bind": "^1.1.2"
},
"engines": {
"node": ">= 0.4"
}
},
"node_modules/http-errors": {
"version": "2.0.0",
"license": "MIT",
"dependencies": {
"depd": "2.0.0",
"inherits": "2.0.4",
"setprototypeof": "1.2.0",
"statuses": "2.0.1",
"toidentifier": "1.0.1"
},
"engines": {
"node": ">= 0.8"
}
},
"node_modules/iconv-lite": {
"version": "0.4.24",
"license": "MIT",
"dependencies": {
"safer-buffer": ">= 2.1.2 < 3"
},
"engines": {
"node": ">=0.10.0"
}
},
"node_modules/inherits": {
"version": "2.0.4",
"license": "ISC"
},
"node_modules/ipaddr.js": {
"version": "1.9.1",
"license": "MIT",
"engines": {
"node": ">= 0.10"
}
},
"node_modules/make-error": {
"version": "1.3.6",
"dev": true,
"license": "ISC"
},
"node_modules/math-intrinsics": {
"version": "1.1.0",
"license": "MIT",
"engines": {
"node": ">= 0.4"
}
},
"node_modules/media-typer": {
"version": "0.3.0",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
},
"node_modules/merge-descriptors": {
"version": "1.0.3",
"license": "MIT",
"funding": {
"url": "https://github.com/sponsors/sindresorhus"
}
},
"node_modules/methods": {
"version": "1.1.2",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
},
"node_modules/mime": {
"version": "1.6.0",
"license": "MIT",
"bin": {
"mime": "cli.js"
},
"engines": {
"node": ">=4"
}
},
"node_modules/mime-db": {
"version": "1.52.0",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
},
"node_modules/mime-types": {
"version": "2.1.35",
"license": "MIT",
"dependencies": {
"mime-db": "1.52.0"
},
"engines": {
"node": ">= 0.6"
}
},
"node_modules/ms": {
"version": "2.0.0",
"license": "MIT"
},
"node_modules/negotiator": {
"version": "0.6.3",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
},
"node_modules/object-assign": {
"version": "4.1.1",
"license": "MIT",
"engines": {
"node": ">=0.10.0"
}
},
"node_modules/object-inspect": {
"version": "1.13.4",
"license": "MIT",
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/on-finished": {
"version": "2.4.1",
"license": "MIT",
"dependencies": {
"ee-first": "1.1.1"
},
"engines": {
"node": ">= 0.8"
}
},
"node_modules/parseurl": {
"version": "1.3.3",
"license": "MIT",
"engines": {
"node": ">= 0.8"
}
},
"node_modules/path-to-regexp": {
"version": "0.1.12",
"license": "MIT"
},
"node_modules/proxy-addr": {
"version": "2.0.7",
"license": "MIT",
"dependencies": {
"forwarded": "0.2.0",
"ipaddr.js": "1.9.1"
},
"engines": {
"node": ">= 0.10"
}
},
"node_modules/qs": {
"version": "6.13.0",
"license": "BSD-3-Clause",
"dependencies": {
"side-channel": "^1.0.6"
},
"engines": {
"node": ">=0.6"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/range-parser": {
"version": "1.2.1",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
},
"node_modules/raw-body": {
"version": "2.5.2",
"license": "MIT",
"dependencies": {
"bytes": "3.1.2",
"http-errors": "2.0.0",
"iconv-lite": "0.4.24",
"unpipe": "1.0.0"
},
"engines": {
"node": ">= 0.8"
}
},
"node_modules/safe-buffer": {
"version": "5.2.1",
"funding": [
{
"type": "github",
"url": "https://github.com/sponsors/feross"
},
{
"type": "patreon",
"url": "https://www.patreon.com/feross"
},
{
"type": "consulting",
"url": "https://feross.org/support"
}
],
"license": "MIT"
},
"node_modules/safer-buffer": {
"version": "2.1.2",
"license": "MIT"
},
"node_modules/send": {
"version": "0.19.0",
"license": "MIT",
"dependencies": {
"debug": "2.6.9",
"depd": "2.0.0",
"destroy": "1.2.0",
"encodeurl": "~1.0.2",
"escape-html": "~1.0.3",
"etag": "~1.8.1",
"fresh": "0.5.2",
"http-errors": "2.0.0",
"mime": "1.6.0",
"ms": "2.1.3",
"on-finished": "2.4.1",
"range-parser": "~1.2.1",
"statuses": "2.0.1"
},
"engines": {
"node": ">= 0.8.0"
}
},
"node_modules/send/node_modules/encodeurl": {
"version": "1.0.2",
"license": "MIT",
"engines": {
"node": ">= 0.8"
}
},
"node_modules/send/node_modules/ms": {
"version": "2.1.3",
"license": "MIT"
},
"node_modules/serve-static": {
"version": "1.16.2",
"license": "MIT",
"dependencies": {
"encodeurl": "~2.0.0",
"escape-html": "~1.0.3",
"parseurl": "~1.3.3",
"send": "0.19.0"
},
"engines": {
"node": ">= 0.8.0"
}
},
"node_modules/setprototypeof": {
"version": "1.2.0",
"license": "ISC"
},
"node_modules/side-channel": {
"version": "1.1.0",
"license": "MIT",
"dependencies": {
"es-errors": "^1.3.0",
"object-inspect": "^1.13.3",
"side-channel-list": "^1.0.0",
"side-channel-map": "^1.0.1",
"side-channel-weakmap": "^1.0.2"
},
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/side-channel-list": {
"version": "1.0.0",
"license": "MIT",
"dependencies": {
"es-errors": "^1.3.0",
"object-inspect": "^1.13.3"
},
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/side-channel-map": {
"version": "1.0.1",
"license": "MIT",
"dependencies": {
"call-bound": "^1.0.2",
"es-errors": "^1.3.0",
"get-intrinsic": "^1.2.5",
"object-inspect": "^1.13.3"
},
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/side-channel-weakmap": {
"version": "1.0.2",
"license": "MIT",
"dependencies": {
"call-bound": "^1.0.2",
"es-errors": "^1.3.0",
"get-intrinsic": "^1.2.5",
"object-inspect": "^1.13.3",
"side-channel-map": "^1.0.1"
},
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/statuses": {
"version": "2.0.1",
"license": "MIT",
"engines": {
"node": ">= 0.8"
}
},
"node_modules/stream": {
"version": "0.0.2",
"license": "MIT",
"dependencies": {
"emitter-component": "^1.1.1"
}
},
"node_modules/toidentifier": {
"version": "1.0.1",
"license": "MIT",
"engines": {
"node": ">=0.6"
}
},
"node_modules/ts-node": {
"version": "10.9.2",
"dev": true,
"license": "MIT",
"dependencies": {
"@cspotcode/source-map-support": "^0.8.0",
"@tsconfig/node10": "^1.0.7",
"@tsconfig/node12": "^1.0.7",
"@tsconfig/node14": "^1.0.0",
"@tsconfig/node16": "^1.0.2",
"acorn": "^8.4.1",
"acorn-walk": "^8.1.1",
"arg": "^4.1.0",
"create-require": "^1.1.0",
"diff": "^4.0.1",
"make-error": "^1.1.1",
"v8-compile-cache-lib": "^3.0.1",
"yn": "3.1.1"
},
"bin": {
"ts-node": "dist/bin.js",
"ts-node-cwd": "dist/bin-cwd.js",
"ts-node-esm": "dist/bin-esm.js",
"ts-node-script": "dist/bin-script.js",
"ts-node-transpile-only": "dist/bin-transpile.js",
"ts-script": "dist/bin-script-deprecated.js"
},
"peerDependencies": {
"@swc/core": ">=1.2.50",
"@swc/wasm": ">=1.2.50",
"@types/node": "*",
"typescript": ">=2.7"
},
"peerDependenciesMeta": {
"@swc/core": {
"optional": true
},
"@swc/wasm": {
"optional": true
}
}
},
"node_modules/type-is": {
"version": "1.6.18",
"license": "MIT",
"dependencies": {
"media-typer": "0.3.0",
"mime-types": "~2.1.24"
},
"engines": {
"node": ">= 0.6"
}
},
"node_modules/typescript": {
"version": "5.8.3",
"dev": true,
"license": "Apache-2.0",
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
},
"engines": {
"node": ">=14.17"
}
},
"node_modules/undici-types": {
"version": "6.19.8",
"dev": true,
"license": "MIT"
},
"node_modules/unpipe": {
"version": "1.0.0",
"license": "MIT",
"engines": {
"node": ">= 0.8"
}
},
"node_modules/utils-merge": {
"version": "1.0.1",
"license": "MIT",
"engines": {
"node": ">= 0.4.0"
}
},
"node_modules/v8-compile-cache-lib": {
"version": "3.0.1",
"dev": true,
"license": "MIT"
},
"node_modules/vary": {
"version": "1.1.2",
"license": "MIT",
"engines": {
"node": ">= 0.8"
}
},
"node_modules/yn": {
"version": "3.1.1",
"dev": true,
"license": "MIT",
"engines": {
"node": ">=6"
}
}
}
}

View File

@@ -0,0 +1,27 @@
{
"name": "fake-llm-server",
"version": "1.0.0",
"main": "dist/index.js",
"scripts": {
"build": "tsc",
"start": "node dist/index.js",
"dev": "ts-node index.ts",
"test": "echo \"Error: no test specified\" && exit 1"
},
"keywords": [],
"author": "",
"license": "ISC",
"description": "Fake OpenAI API server for testing",
"dependencies": {
"cors": "^2.8.5",
"express": "^4.18.2",
"stream": "0.0.2"
},
"devDependencies": {
"@types/cors": "^2.8.18",
"@types/express": "^4.17.21",
"@types/node": "^20.17.46",
"ts-node": "^10.9.2",
"typescript": "^5.8.3"
}
}

View File

@@ -0,0 +1,13 @@
{
"compilerOptions": {
"target": "ES2020",
"module": "commonjs",
"outDir": "dist",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true
},
"include": ["*.ts"],
"exclude": ["node_modules"]
}