Files
moreminimore-vibe/testing/fake-llm-server
Will Chen 9691c9834b Support concurrent chats (#1478)
Fixes #212 


<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Add concurrent chat support with per-chat state, chat activity UI, IPC
per-chat handling, and accompanying tests.
> 
> - **Frontend (Chat concurrency)**
> - Replace global chat atoms with per-chat maps:
`chatMessagesByIdAtom`, `isStreamingByIdAtom`, `chatErrorByIdAtom`,
`chatStreamCountByIdAtom`, `recentStreamChatIdsAtom`.
> - Update `ChatPanel`, `ChatInput`, `MessagesList`,
`DyadMarkdownParser`, and `useVersions` to read/write per-chat state.
> - Add `useSelectChat` to centralize selecting/navigating chats; wire
into `ChatList`.
> - **UI**
> - Add chat activity popover: `ChatActivityButton` and list; integrate
into `preview_panel/ActionHeader` (renamed from `PreviewHeader`) and
swap in `TitleBar`.
> - **IPC/Main**
> - Send error payloads with `chatId` on `chat:response:error`; update
`ipc_client` to route errors per chat.
> - Persist streaming partial assistant content periodically; improve
cancellation/end handling.
> - Make `FileUploadsState` per-chat (`addFileUpload({chatId,fileId},
...)`, `clear(chatId)`, `getFileUploadsForChat(chatId)`); update
handlers/processors accordingly.
> - **Testing**
> - Add e2e `concurrent_chat.spec.ts` and snapshots; extend helpers
(`snapshotMessages` timeout, chat activity helpers).
> - Fake LLM server: support `tc=` with options, optional sleep delay to
simulate concurrency.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
9035f30b73a1f2e5a366a0cac1c63411742b16f3. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->
2025-10-09 10:51:01 -07:00
..
2025-06-17 16:59:26 -07:00
2025-06-17 16:59:26 -07:00
2025-05-13 15:34:41 -07:00
2025-05-13 15:34:41 -07:00

Fake LLM Server

A simple server that mimics the OpenAI streaming chat completions API for testing purposes.

Features

  • Implements a basic version of the OpenAI chat completions API
  • Supports both streaming and non-streaming responses
  • Always responds with "hello world" message
  • Simulates a 429 rate limit error when the last message is "[429]"
  • Configurable through environment variables

Installation

npm install

Usage

Start the server:

# Development mode
npm run dev

# Production mode
npm run build
npm start

Example usage

curl -X POST http://localhost:3500/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{"messages":[{"role":"user","content":"Say something"}],"model":"any-model","stream":true}'

The server will be available at http://localhost:3500 by default.

API Endpoints

POST /v1/chat/completions

This endpoint mimics OpenAI's chat completions API.

Request Format

{
  "messages": [{ "role": "user", "content": "Your prompt here" }],
  "model": "any-model",
  "stream": true
}
  • Set stream: true to receive a streaming response
  • Set stream: false or omit it for a regular JSON response

Response

For non-streaming requests, you'll get a standard JSON response:

{
  "id": "chatcmpl-123456789",
  "object": "chat.completion",
  "created": 1699000000,
  "model": "fake-model",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "hello world"
      },
      "finish_reason": "stop"
    }
  ]
}

For streaming requests, you'll receive a series of server-sent events (SSE), each containing a chunk of the response.

Simulating Rate Limit Errors

To test how your application handles rate limiting, send a message with content exactly equal to [429]:

{
  "messages": [{ "role": "user", "content": "[429]" }],
  "model": "any-model"
}

This will return a 429 status code with the following response:

{
  "error": {
    "message": "Too many requests. Please try again later.",
    "type": "rate_limit_error",
    "param": null,
    "code": "rate_limit_exceeded"
  }
}

Configuration

You can configure the server by modifying the PORT variable in the code.

Use Case

This server is primarily intended for testing applications that integrate with OpenAI's API, allowing you to develop and test without making actual API calls to OpenAI.